Stability of selenium nanoparticles as novel anticancer delivery vehicle in relevant biological media

Atiđa Selmani, Ivan Vidaković, Christian Josef Hill, Ruth Prassl and Ivana Vinković Vrček

1st STSM Conference

16th March 2022

Outline

- Introduction
- Experimental
- Results
- Conclusion

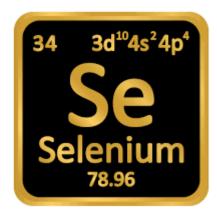
STSM February 2019

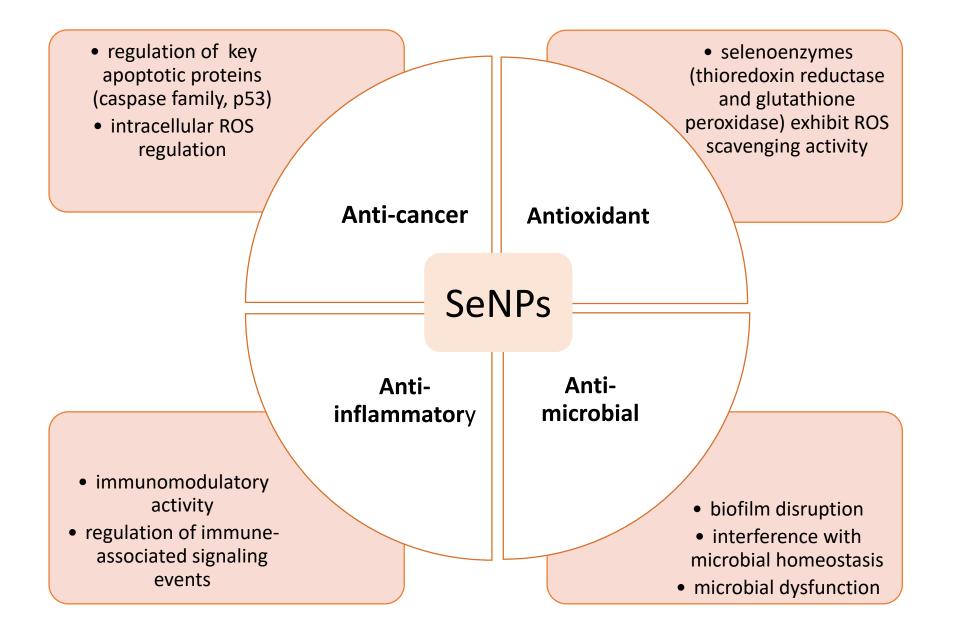
Host Institution

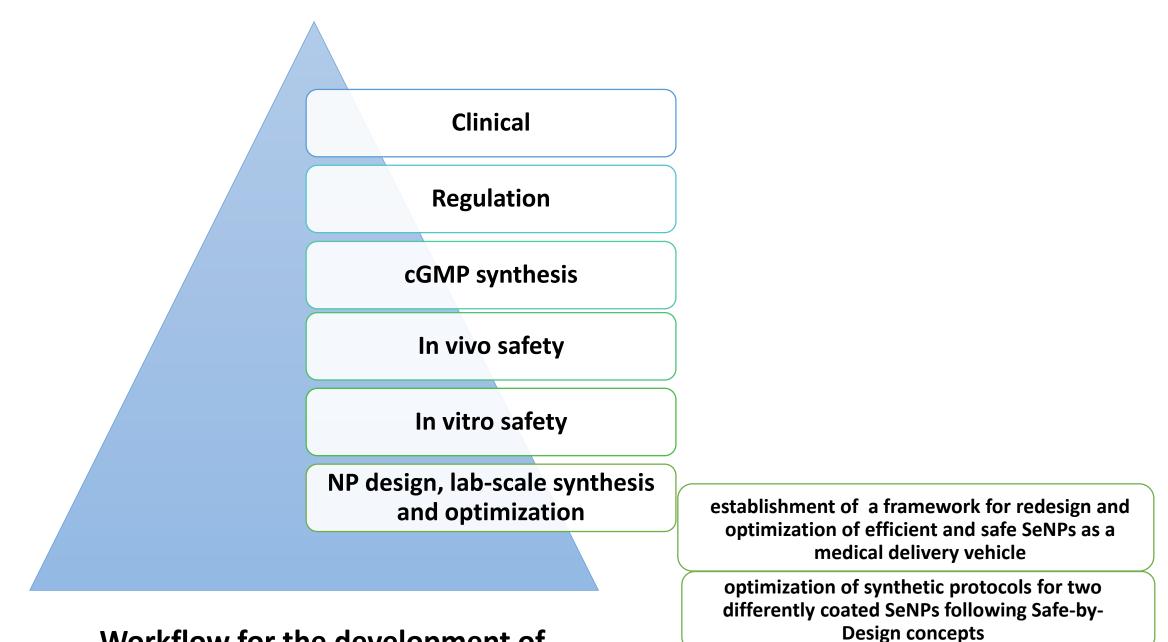
Laboratory for Nanomedicine The Division of Biophysics Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging

CANCER NANOMEDICINE - FROM THE BENCH TO THE BEDSIDE

COST ACTION CA 17140


Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging

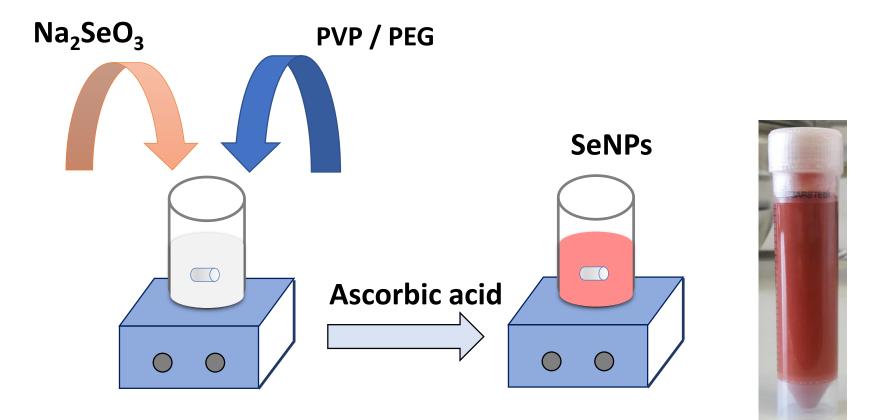



Introduction

• essential micronutrient

- vital role in various biological processes
- incorporated in selenoproteins → regulating immune cell functions and response
- narrow window between the rapeutic and toxic effects \rightarrow SeNPs
- SeNPs lower toxicity than bulk Se forms

Workflow for the development of nanomedicine from bench to bedside

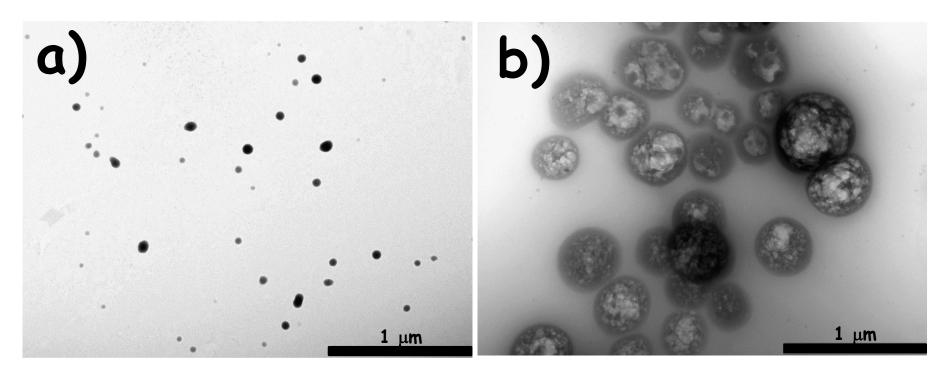

Aim

• synthesis and characterization of SeNPs coated with PVP and PEG

- PVP: water-soluble, inert, non-toxic, temperature-resistant, pH-stable, biocompatible, biodegradable polymer → encapsulate both hydrophilic and lipophilic drugs
- PEG: non-ionic hydrophilic, reduces the tendency of particles to aggregate by steric stabilization → producing formulations with increased stability during storage and application, prolonged blood circulation time
- characterization morphology, size and zeta potential
- stability studies behaviour in various media with different complexity

Experimental

Synthesis

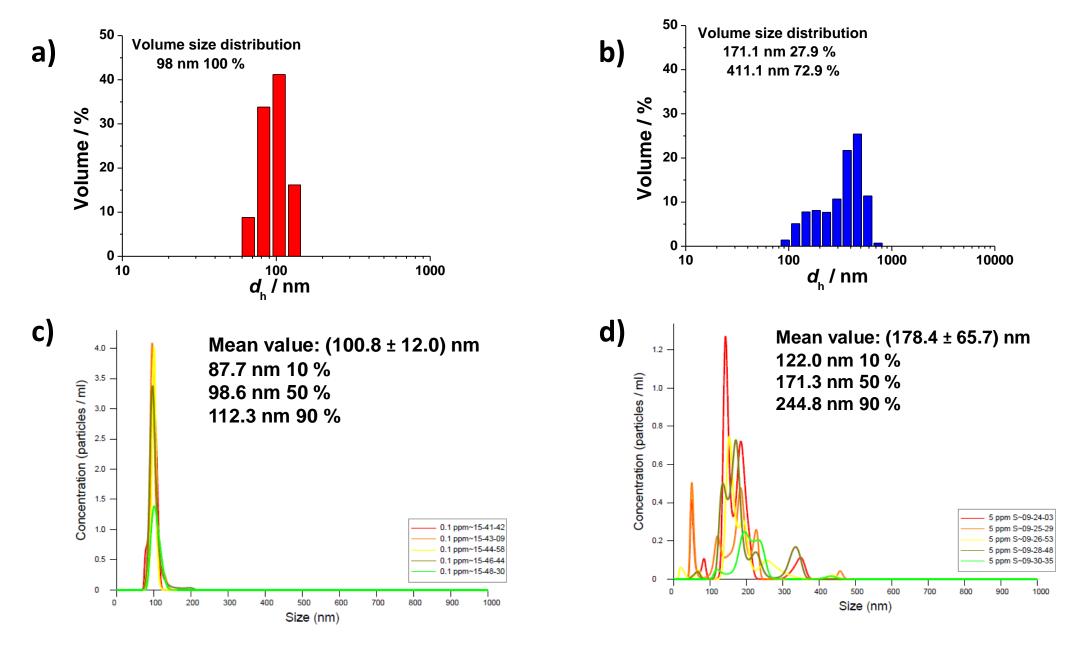

Characterization

- Se concentration \rightarrow Atomic Absorption Spectrometry
- Se morphology and size \rightarrow TEM
- Se morphology and size \rightarrow DLS and NTA

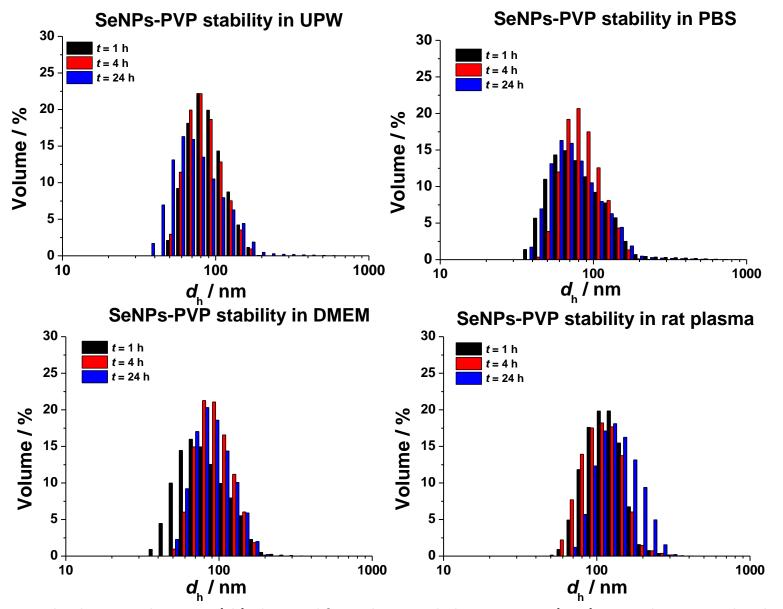
Stability studies

- DLS and ELS

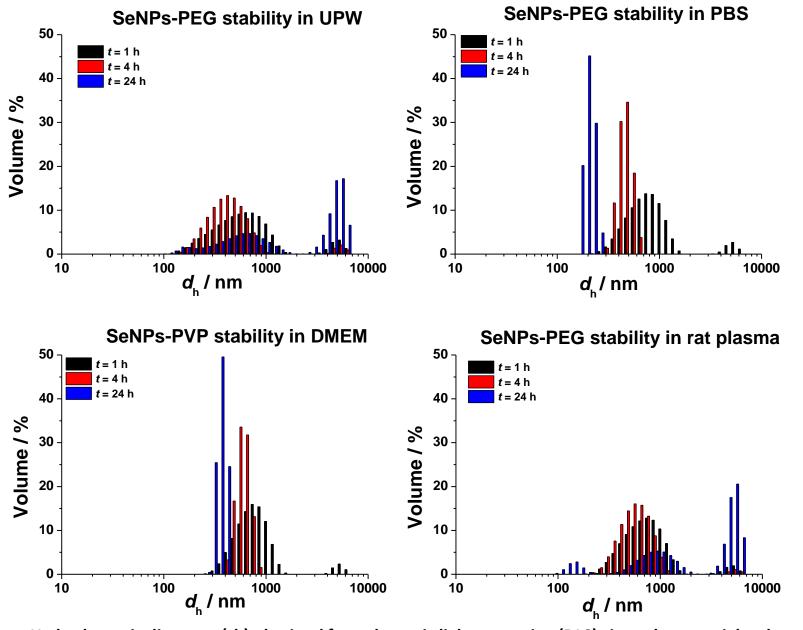
Results


TEM micrographs of SeNPs: a) PVP coated and b) PEG coated.

SeNPs-PVP


uniform spherical nanoparticles with size 50-70 nm

SeNPs-PEG


spherical assemblies consisted of SeNPs crystals core, imbedded in the network of PEG macromolecular chains with size in range of 200-500 nm

DLS (a, b) and NTA (c, d) measurements for SeNPs (a, c) PVP coated and (b, d) PEG coated dispersed in ultra-pure water. γ (SeNPs-PVP) = 0.1 ppm , γ (SeNPs-PEG) = 10 ppm , ϑ = 25 °C.

Hydrodynamic diameter (d_h) obtained from dynamic light scattering (DLS) size volume-weighted distribution of SeNPs, coated with PVP in different medium: UPW, phosphate buffer solution (PBS), cell culture media (DMEM) and rat plasma. γ (SeNPs) = 100 ppm , ϑ = 25 °C.

Hydrodynamic diameter (d_h) obtained from dynamic light scattering (DLS) size volume-weighted distribution of SeNPs, coated with PEG in different medium: UPW, phosphate buffer solution (PBS), cell culture media (DMEM) and rat plasma. γ (SeNPs) = 100 ppm , ϑ = 25 °C.

Hydrodynamic diameter (d_h) of SeNPs, coated with PVP and PEG in different medium obtained by nanoparticle tracking analysis (NTA).

SeNPs	Media	t/h	(d _h ± SD)/ nm	d _h (10 %) / nm	d _h (50 %) / nm	d _h (90 %) / nm
PVP-coated	UPW	1	92.2 ± 14.3	77.0	90.2	104.9
		4	106.5 ± 23.9	86.6	101.9	123.2
		24	106.3 ± 26.1	83.5	94.7	114.7
	PBS	1	135.3 ± 55.0	99.1	113.6	185.4
		4	149.0 ± 75.5	95.4	112.1	270.1
		24	176.2 ± 70.7	111.7	150.0	293.4
	DMEM	1	103.7 ± 14.3	87.4	100.6	119.7
		4	126.2 ± 37.4	94.5	117.5	158.6
		24	95.8 ± 22.7	78.4	91.0	113.2
PEG-coated	UPW	1	161.0 ± 60.3	98.9	149.9	226.4
		4	177.6 ± 61.4	112.7	165.5	253.9
		24	164.0 ± 64.1	94.9	154.2	242.3
	PBS	1	173.5 ± 73.6	100.5	159.7	258.1
		4	172.2 ± 83.4	97.2	151.1	256.9
		24	172.7 ± 74.5	110.9	151.4	273.6
	DMEM	1	210.2 ± 75.8	119.6	199.1	309.7
		4	293.1 ± 122.1	147.2	263.8	444.8
		24	216.7 ± 140.7	56.6	202.2	389.3

Zeta potential (ζ) of SeNPs, coated with PVP and PEG in different medium: UPW, phosphate buffer solution (PBS), cell culture media (DMEM) and rat plasma, γ (SeNPs) = 100 ppm , ϑ = 25 °C.

CoNDo	Media	(ζ±SD)/ mV			
SeNPs	Ινιέαια	t = 1 h	t = 4 h	t = 24 h	
-	UPW	-35.1 ± 0.2	-39.7 ± 5.8	-29.0 ± 0.9	
oatec	PBS	-18.4 ± 1.1	-18.1 ± 1.5	-16.2 ± 1.7	
PVP-coated	DMEM	-13.6 ± 0.6	-12.6 ± 0.8	-11.9 ± 1.7	
	RAT PLASMA	-13.9 ± 0.5	-12.9 ± 0.3	-11.9 ± 1.0	
	UPW	-50.3 ± 0.4	-49.2 ± 1.2	-48.4 ± 0.6	
oatec	PBS	-37.9 ± 1.7	-33.4 ± 1.6	-28.7 ± 0.7	
PEG-coated	DMEM	-21.3 ± 1.7	-18.0 ± 1.9	-20.3 ± 1.5	
	RAT PLASMA	-24.1 ± 1.1	-24.1 ± 1.2	-18.0 ± 0.8	

Conclusions

- ✓ SeNPs with two different coatings were prepared, PVP and PEG coated SeNPs
- ✓ obtained results shown that the complexity of the media, *i.e.* ionic strength, pH, presence of sugars and proteins have a strong impact on the size distribution, aggregation and surface chemistry of SeNPs
- ✓ the first phase for the rationale development of new potential nanotherapeutics was achieved

Acknowledgement

Laboratory for Nanomedicine The Division of Biophysics Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Med Uni Graz

Assoc. Prof. Dr. Ruth Prassl

MPharm. Ivan Vidakovic

Dr. Chris Hill

Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging

Analytical Toxicology and Mineral Metabolism Unit Institute for Medical Research and Occupational Health

Dr. Ivana Vinković Vrček

Thank you for your attention