Functional coordination polymers at the nanoscale: old materials new tricks

Daniel Ruiz-Molina Institut Catala de Nanociencia i Nanotecnologia (ICN2-CSIC))

Where are we?

Work @ Nanosfun

Institut Català de Nanociència i Nanotecnologia

Biodhesives

Tissue regeneration

Metals in medicine

Institut Català de Nanociència i Nanotecnologia

Metals can be used a **theurapeutic** and **diagnostic** agents:

- Gadolinium(III), Iron(III), Manganese(II) for MRI
- Indium-111 and Copper-64 for **Positron emission tomography**
- Platinum(II) and Ru(II, III) to treat cancer tumours
- Zinc(II) to treat the herpes virus
- Etc...

Encapsulation!

Drawbacks of the treatment:

- Side effects caused by the systemic distribution
- Low hydrolytic stability
- High reactivity towards proteins and other biomolecules

Nanocarriers

polymeric nanoparticles are one of the most widely used carriers

Increase of the **encapsulation yield** Long lasting **release triggered** Excellent biocompatibility and biodistribution Chemical **flexibility**

Institut Català de Nanociència i Nanotecnologia

Coordination polymers

Crystallization

••• |CN29

Synthesis

.

Flexible ligands and out-of-equilibrium conditions

Size/stability control

Amorphous nanoparticles with controlled dimensions and stable colloidal suspensions

Institut Català

Precedents

A very successful strategy based on both coordination polymerization and precipitation in a poor solvent to produce crosslinked metal-organic spheres

 $\label{eq:2.1} \begin{array}{l} Zn-BMSB-Zn \; \textbf{3a}, \; M \; \text{and} \; M' = Zn^{2*}, \; R = CO_2^{-1} \\ Cu-BMSB-Cu \; \textbf{3b}, \; M \; \text{and} \; M' = Cu^{2*}, \; R = CO_2^{-1} \\ Ni-BMSB-Ni \; \textbf{3c}, \; M \; \text{and} \; M' = Ni^{2*}, \; R = CO_2^{-1} \\ \end{array}$

Mirkin et al., Nature 2005, 438, 651

Coordination-Induced Formation of Submicrometer-Scale, Monodisperse, Spherical Colloids of **Organic-Inorganic Hybrid Materials** at Room Temperature

Wang et al. J. Am.. Chem. Soc. 2005, 127, 13102-13103

Bibliography

Publication Date: July-2020

Coord. Chem. Rev. **2021**, 441, 213977

Coord. Chem. Rev. 2021, 432, 213716

Objective

Pt(IV)-COOH

Institut Català de Nanociència i Nanotecnologia

	24 h		72 h		
	IC ₅₀ (μM) ¹		IC ₅₀ (μM) ¹		
Cell line	Pt(IV) prodrug	Pt(IV)-NCPs	Pt(IV) prodrug	Pt(IV)-NCPs	
HeLa	>1000	250 ± 35	431 ± 82	129 ± 27	
MCF-7	>1000	249 ± 64	296 ± 31	59 ± 8	
HePG2	>1000	316 ± 69	624 ± 174	199 ± 39	
(BE)-M17	907 ± 20	218 ± 21	494 ± 66	133 ± 8	

Time (hours)

¹Cell viability in the presence of the indicated compound and referred to Pt concentration. Data shown as IC50 ± SE.

Pt(IV)-COOH

36 ICN29 Institut Català de Nanociència i Nanotecnologia

Pt(IV)-NCPs at 75 μ M . fg Pt/cell **Cell line** Pt(IV) prodrug Pt(IV)-NCPs 11.1 ± 2.9 9.1 ± 3.5 HeLa

Table 3. Pt Uptake in different cell lines after 6 h treatment with Pt(IV) prodrug or

Data shown as mean ± SD of three independent experiments performed in triplicate.

MCF-7

(BE)-M17

Table 4. Pt bound to DNA after 6 h treatment with Pt(IV) prodrug or Pt(IV)-NCPs at 150 μM.

 6.3 ± 1.8

5.5 ± 3.3

	fg Pt/ng DNA			
Cell line	Cisplatin -Pt(II)-	Pt(IV) prodrug	Pt(IV)-NCPs	
HeLa	47.1 ± 13.4	8.1 ± 0.7	11.9 ± 2.4	
MCF-7	39.8 ± 11.1	5.5 ± 0.7	7.0 ± 1.4	
(BE)-M17	57.9 ± 33.6	4.8 ± 1.6	8.9 ± 2.4	

 5.9 ± 2.0

 6.0 ± 4.0

Data shown as mean ± SD of three independent experiments performed in triplicate.

Collaboration wit Dr. Julia Lorenzo, IBB-UAB

Chem. Eng. J. 2018, 340, 94-102

Pt(IV)-Catechol

Institut Català de Nanociència i Nanotecnologia

С

0

10

20

Time (h)

IC ₅₀ (μΜ)ª				
	Cell line (24h)		Cell line (72h)	
Compound	HeLa	GL261	HeLa	GL261
Pt-Fe NCPs	31.45 ± 1.10	13.48 ± 0.90	2.56 ± 0.63	2.00 ± 0.18
Complex 1	$\textbf{29.94} \pm \textbf{1.04}$	$\textbf{17.40} \pm \textbf{1.08}$	$\textbf{1.85}\pm\textbf{0.36}$	$\textbf{4.17} \pm \textbf{0.12}$
Cisplatin	15.98 ± 1.04	$\textbf{5.61} \pm \textbf{0.28}$	$\textbf{2.34}\pm\textbf{0.30}$	$\textbf{2.16} \pm \textbf{0.26}$

80-Cumulative release (%) pH 7.4 pH 7.4 -🗕 pH 5.5 🗕 pH 5.5 0 30 10 20 40 50 0 2 6 8 10 4 Time (h) Time (h) d 100-100 Cumulative release (%) Cumulative release (%) 80 80. 60 60· 40 40 pH 7.4 pH 5.5 -pH 7.4 + 2 mM GSH pH 5.5 + 2 mM GSH 20 20. pH 7.4 + 10 mM GSH pH 5.5 + 10 mM GSH ------0 🔸 0-

30

40

50

10

20

Time (h)

30

40

50

0

b

pH-sensitive!!!!

Submitted. 2022,

Day p.i.

Submitted. 2022,

MRI imaging

Institut Català de Nanociència i Nanotecnologia

NCPs system	Size (nm) and ξ-potential (mV)				
	SEM	DLS (PBS)	ξ-Pot. (PBS)	DLS (PBS+BSA)	ξ -Pot. (PBS+BSA)
Fe-NCP	45 ± 5	97 ± 32	-31.2	56 ± 21	-19.1

In a typical experiment, an aqueous solution of $M(CH_3COO)_2 \cdot xH_2O$ was added to an ethanolic solution combining two co-ligands: 3,4-dihydroxycinnamic acid (dhc), and 1,4-bis(imidazol-1-ylmethyl)benzene (bix). After vigorous stirring at room temperature, a precipitate that was then collected by centrifugation, washed several times with ethanol, and dried under vacuum.

Characteristics

Institut Català de Nanociència i Nanotecnologia

Agarose 1% solution

IN VITRO: HeLa cell viability at **24 h** (a) and **72 h** (b).

: Better T1 contrast and dual T1/T2 contrast agent

MRI imaging IN VIVO

- **Target**: Mice with tumor GL261 (BBB broken)
- Weighted T1 and T2 images
- Comparative study with commercial contrast agent: Gadopentetic acid (Magnevist [®] based on Gadolinium)

🐌 |CN29

MRI imaging IN VIVO

acquired continuously during 30 minutes after CA administration, resulting in a total of 15 frames for T1w and 15 frames for T2w images.

Summary

••• ICN29 Institut Catal de Nanociència i Nanotecnologia

Greater accumulation T1 maximum at **9.4**±1.1 min and T2 minimum at **5.3**±1.1 min. (**6.1**±1.1 min. and 2.6±1.1 min for Magnevist) due to the EPR effect.

Enhanced RCE:T1w relative contrast enhancement (RCE) (317.4±9.4%) was notably superior to those observed with Magnevist (250.9±3.1%). Notable T2w signal (26%) decrease (no signal decrease was observed for Magnevist)

Simultaneous exploration: T1 and T2 RCE at a reasonably short time frame in the preclinical glioblastoma model (between 3.95 and 10.72 min after administration for maximum T1/T2 effect), allowing to obtain both data types in the same exploration

PET tomography

PBS / r.t.

ò

6

12

18

24

30

10-

Time (h)

12

18 24 30

30

12 18 24

0.5

0+

12

24

30

In-MPN-PEG In-MPN-FA

Greater accumulation.

Retention Biodistribution:

UBC

ACS Appl. Mat. Interf. 2021, 13 (9), 10705

Theranostics

encapsulation of CPT antitumoral applications.

Drug release Different families of fluorescent drugs

Encapsulation yields 10-20%

Release process

In vitro release profile of DOX and SN-38 from DOX/Zn(bix) and SN-38/Zn(bix) spheres incubated in pH 7.2 PBS at 37 °C.

pH 7.4 PBS at 37 C.

Chem. Commun. , 2010, 46, 4737 - 4739

Citoxicity CPT@CPP0-Fe

half maximal inhibitory concentration (IC50)

Seven-fold drug efficacy increase!

mammary humane adenocarcinoma: MCF7 cells

Encapsulation hybrid SPION@CPPs

Angew. Chem. Int. Ed. , 2009, 48, 2325

Multiencapsulation

Institut Català de Nanociència i Nanotecnologia

Angew. Chem. Int. Ed. , 2009, 48, 2325

Functional ligand

Tuneable release

prodrug ligands

Chem. Eur. J , 2013, 19, 17508–17516.

Long lasting release...

Institut Català de Nanociència i Nanotecnologia

P3 laboratory @ Clinic Hospital

Antiviral effect

Cell viability of different concentrations on HIV-infected MT-2 cell culture

The antiviral effect of the compounds was indirectly measured as an increase in cell viability (increase in absorbance at 620 nm)

Surface functionality:

Dye/dual mode

Institut Català de Nanociència i Nanotecnologia

ChemNanoMat 2018, 4 (2), 183-193

Confocal Laser Scanning Microscopy in vitro images of HeLa cells treated for 2 h with NCP3-FITC-A568 and non-functionalized NCP3 (control).

Cellular uptake

Institut Català de Nanociència i Nanotecnologia

mammary humane adenocarcinoma: MCF7 cells

Quantitative

- 1. MCF-7 cells incubated with 100 mg.mL⁻¹ of CPPs for 24 hours and lysed in PBS-1% SDS
- 2. The cell lysate was quantified in a spectrofluoremeter
- 3. The relative cell internalization of the nanoparticles was **40%**

Take home message

U

1

MARIE CURIE

RETOS-COLABORACIÓN

www.nanosfun.com

@Nanosfun ICN2

NANOSFUN RG

dani.ruiz@icn2.cat

