

EUROPEAN COOPERATION

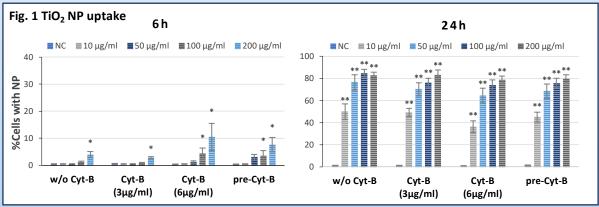
IN SCIENCE & TECHNOLOGY

Genotoxicity assessment of TiO₂ nanoparticles in SH-SY5Y cells: suitability of the cytokinesis-block micronucleus test

inibic

instituto de

investigación biomédica


Natalia Fernández-Bertólez^{1,2}, Fátima Brandao^{3,4,5,6}, Carla Costa^{3,4,6}, Carlota Lema-Arranz^{1,2}, Raquel Rodríguez-Fernández^{1,2}, Eduardo Pásaro^{1,2}, Joao Paulo Teixeira^{3,4,6}, Blanca Laffon^{1,2}, Vanessa Valdiglesias^{2,7}

¹ Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Psicología, A Coruña, Spain; ² Instituto de Investigación Biomédica de A Coruña (INIBIC), AE CICA-INIBIC, A Coruña, Spain; ³ EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; ⁴ Environmental Health Department, Portuguese National Institute of Health, Porto, Portugal; ⁵ Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; ⁶ Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal; ⁷ Universidade da Coruña, Grupo DICOMOSA, Centro de Investigaciones Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, A Coruña, Spain

INTRODUCTION

Standard toxicity tests might not be fully adequate for evaluating nanomaterials since their unique features are also responsible for unexpected interactions. The *in vitro* cytokinesis-block micronucleus (CBMN) test (Test Guideline 487, OECD, 2014) is recommended for genotoxicity testing of pharmaceuticals intended for human use, but cytochalasin-B (Cyt-B) may interfere with nanoparticles (NP), leading to inaccurate results.

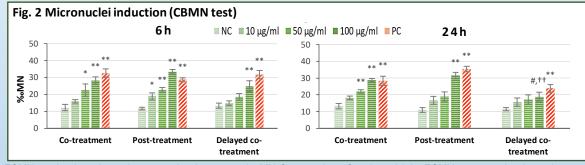
OBJECTIVE: To determine whether Cyt-B could interfere with micronuclei (MN) induction by TiO_2 NP in human SH-SY5Y cells, as assessed by CBMN test.

METHODS

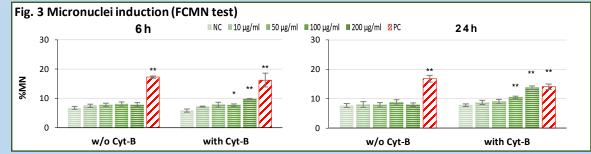
SH-SY5Y cells (human neuroblastoma) were treated for 6 and 24 h with TiO₂ NP (10-200 μg/ml).

• **Cellular uptake** of TiO₂ NP was determined by flow cytometry (Suzuki *et al.* 2007) with some experimental adaptations: absence of Cyt-B, co-treatment with 3 or 6 μ g/ml Cyt-B, and pre-incubation with 6 μ g/ml Cyt-B for 1 h before adding the TiO₂ NP. Cell culture medium was used as negative control (NC)

• Genotoxicity was evaluated using the CBMN test. Two treatment options were compared to the standard co-treatment (simultaneous addition of NPs for 6/24 h and 6 µg/ml Cyt-B for 24 h): (1) delayed co-treatment (application of NP for 6/24 h, addition of 6 µg/ml Cyt-B 3/6 h later, and further incubation for 24 h), and (2) post-treatment (application of NP for 6/24 h, wash out and addition of 6 µg/ml Cyt-B for 24 h). Influence of Cyt-B MN induction as evaluated by flow cytometry (FCMN) in the presence or absence of Cyt-B was also assessed.


• For genotoxicity analysis, 1% DMSO in medium as negative control (NC) and mitomycin-C (10 or 1.5 μ M for 6 or 24 h, respectively) as positive control (PC), were used.

• Three independent experiments were performed for each experimental condition. Data were expressed as mean \pm standard error. **P*≤0.05, ***P*≤0.01 comparison to the control; #*P*≤0.05, comparison to 100 µg/ml co-treatment; ††*P*≤0.01, comparison to 100 µg/ml post-treatment.


Funding: Xunta de Galicia [ED431B 2019/02], NanoBioBarriers [PTDC/MED-TOX/31162/2017], NanoLegaTox [PTDC/SAU-PUB/29651/2017], Ministerio de Educación, Cultura y Deporte [BEAGAL18/00142 to V.V.], FCT [SFRH/BD/101060/2014 to F.B.], and CA17140 NANO2CLINIC COST Action [ECOST-STSM-CA17140-47204 to N.F-B.].

RESULTS

- TiO₂ NP were significantly internalized by cells, both in the absence and presence of Cyt-B, indicating that this chemical does not interfere with NP uptake. (Fig. 1).
- CBMN test showed dose-dependent increases in MN frequencies after 6 or 24 h treatments in the three experimental options. No differences between experimental options were obtained in most of conditions tested (Fig. 2).

 FCMN evaluation showed progressive increases in MN frequencies after 6 or 24 h. FCMN assay only showed a positive response when Cyt-B was added simultaneously with TiO₂ NP, suggesting that Cyt-B might alter CBMN assay results. (Fig. 3).

CONCLUSIONS

Post-treatment and delayed co-treatment of Cyt-B, proposed by OECD for CBMN test when applied to nanomaterials, seem not to be adequate alternatives to avoid Cyt-B interference under the specific conditions employed in this study. Consequently, further investigations are necessary to define additional protocol alternatives of CBMN assay for accurately assessing genotoxicity of

nanomaterials.

OECD (2014). Test No. 487: In Vitro Mammalian Cell Micronucleus Test. OECD Publishing. Suzuki, H., et al. (2007). Environ. Sci. Technol. 41:3018–3024.