

Prague Czech Republic



Martin Hrubý, Lenka Loukotová, Mariia Rabyk



1st CA17140 COST CONFERENCE, 15th-17th October 2019, Riga, Latvia

# Polysaccharide-graft-poly(2-alkyl-2-oxazolines)

- Poly(2-alkyl-2-oxazoline) part:
  - Synthetic
  - Stimuli-responsive
  - Easy functionalization
- Polysaccharide part:
  - Natural
  - Biologically active
  - Biodegradable





### Immunoradiotherapy

- a conceptually new cancer treatment
- a possible synergistic effect of both immunotherapy and radiotherapy
- treatment principle:







- ii. radiation kills tumor cells (including cells protecting tumor from immune response)
- iii. immunomodulator enhances following immune response against tumor cell debris and metastasis

### Immunoradiotherapy – polymer drug design



- therapeutic radiation – yttrium-90(III)  $\beta$ - decay,  $T_{1/2}$  = 64.1 h

- thermoresponsiveness
   poly(2-isopropyl-2-oxazoline-co-2-butyl-2-oxazoline)
   biocompatibility, radioresistivity<sup>1</sup>
- immunomodulatory polysaccharide
   non-specific immunity activation, biodegradable





### Immunoradiotherapy – polymer drug design

#### Used immunomodulatory polysaccharides

- β-glucan from Auricularia auricula-judae
  - anticancer and immunostimulatory properties<sup>1</sup>









### Immunoradiotherapy – polymer drug design

#### Used immunomodulatory polysaccharides

- β-glucan from Auricularia auricula-judae
  - anticancer and immunostimulatory properties<sup>1</sup>





#### K-carrageenan from Kappaphycus alvarezii

- anticancer and immunostimulatory properties<sup>2</sup>
- agent for the induction of experimental inflammation and edema<sup>3</sup>





Kappaphycus alvarezii

<sup>&</sup>lt;sup>1</sup> M. Zhaocheng et al., Structure and chain conformation of β-glucan isolated from Auricularia auricula-judae, Biopolymers, 2008, 89, 614–622.

<sup>&</sup>lt;sup>2</sup> M. Raman et al., κ-Carrageenan from marine red algae, Kappaphycus alvarezii – A functional food to prevent colon carcinogenesis. J. Funct. Foods, **2015**, 15, 354–364.

# Structural aspects of the polysaccharides I

#### β-Glucan – forms hollow nanofibres in water by self-assembly<sup>1</sup>



SEM: Distribution of sizes

SEM: Morphology

#### Hollow nanofibers formation





## Structural aspects of the polysaccharides II

κ-Carrageenan – thermoresponsive (UCST), K<sup>+</sup> and Ca<sup>2+</sup>-

responsive





# A. Polymer synthesis and characterization











#### **1. Extraction** of **β-glucan** from *Auricularia auricula-judae*





#### **2.** Grafting of $\beta$ -glucan with poly(2-alkyl-2-oxazoline)s (POX)



| Sample | Theor. graft length (Da) |  |  |
|--------|--------------------------|--|--|
| G1     | 500                      |  |  |
| G2     | 1000                     |  |  |
| G3     | 2500                     |  |  |
| G4     | 5000                     |  |  |









#### 3. Polymer characterization

| Sample | Theor. graft<br>length (Da) | Found graft<br>length (Da) <sup>1</sup> | POX content<br>(wt. %) <sup>2</sup> | M <sub>w</sub> (Da) <sup>1</sup> | Glucose units per graft |
|--------|-----------------------------|-----------------------------------------|-------------------------------------|----------------------------------|-------------------------|
| G1     | 500                         | 590                                     | 26                                  | 3.7 × 10 <sup>6</sup>            | 9                       |
| G2     | 1000                        | 1140                                    | 47                                  | $6.4 \times 10^{6}$              | 7                       |
| G3     | 2500                        | 2290                                    | 70                                  | $7.5 \times 10^{6}$              | 6                       |
| G4     | 5000                        | 4180                                    | 80                                  | $1.6 \times 10^{7}$              | 6                       |

<sup>&</sup>lt;sup>1</sup> Determined by SEC-MALS.





<sup>&</sup>lt;sup>2</sup> Determined by elemental analysis.







4. Dynamic light scattering – study of temperature-dependent behavior

| Sample    | Theor. graft<br>length (Da) |  |  |
|-----------|-----------------------------|--|--|
| <b>G1</b> | 500                         |  |  |
| G2        | 1000                        |  |  |
| G3        | 2500                        |  |  |
| G4        | 5000                        |  |  |













4. Dynamic light scattering – study of temperature-dependent behavior

| Sample | Theor. graft<br>length (Da) |   |
|--------|-----------------------------|---|
| G1     | 500                         |   |
| G2     | 1000                        |   |
| G3     | 2500 🕊                      |   |
| G4     | 5000                        | _ |











#### 5. Fluorescence measurement

- study of microenvironment hydrophobicity during phase transition
- aggregation-induced emission fluorescence probe

(highly fluorescent in aggregated state)



**G3** (c = 1 mg/mL in PBS), 8-anilino-1-naphthalenesulfonic acid ammonium salt ( $c = 0.25 \mu \text{mol/mL}$ )



















#### **1. Grafting** of κ-carrageenan with **poly(2-alkyl-2-oxazoline)s** (POX)







#### 2. Polymer characterization



|            | Theor. graft | Found graft              | POX content          | Carbohydrate monomeric | M <sub>w</sub> (Da)¹  |
|------------|--------------|--------------------------|----------------------|------------------------|-----------------------|
|            | length (Da)  | length (Da) <sup>1</sup> | (wt. %) <sup>2</sup> | units per graft        | ••                    |
| <b>C1</b>  | 4000         | 0.00                     | 34                   | 9.3                    | 2.3 x 10 <sup>6</sup> |
| <b>C2</b>  |              |                          | 26                   | 13.5                   | 1.7 x 10 <sup>6</sup> |
| С3         | 1000         | 860                      | 18                   | 21.8                   | 2.0 x 10 <sup>6</sup> |
| <b>C4</b>  |              |                          | 8                    | 55.0                   | 1.0 x 10 <sup>6</sup> |
| <b>C5</b>  | 2500         | 00 1950                  | 65                   | 5.9                    | $4.5 \times 10^6$     |
| <b>C6</b>  |              |                          | 60                   | 7.2                    | $2.0 \times 10^6$     |
| <b>C7</b>  | 2500         |                          | 35                   | 20.5                   | $1.2 \times 10^6$     |
| <b>C8</b>  |              |                          | 15                   | 59.6                   | 9.5 x 10 <sup>5</sup> |
| <b>C</b> 9 | 5000 4       |                          | 81                   | 5.6                    | 6.3 x 10 <sup>6</sup> |
| C10        |              | 4350                     | 74                   | 8.3                    | 5.4 x 10 <sup>6</sup> |
| C11        |              |                          | 28                   | 60.8                   | 9.1 x 10 <sup>5</sup> |
| C12        |              |                          | 15                   | 132.1                  | 5.3 x 10 <sup>5</sup> |



C1 - C12

<sup>&</sup>lt;sup>1</sup> Determined by SEC-MALS.

<sup>&</sup>lt;sup>2</sup> Determined by elemental analysis.



3. Dynamic light scattering – study of temperature-dependent behavior



**C6** (c = 1 mg/mL in PBS),  $M_n(\text{grafts}) = 1950 \text{ Da}$ 







3. Dynamic light scattering

increasing grafting density



alvarezii



(c = 1 mg/mL in)0.15M NaCl)





#### 4. Fluorescence measurement



- study of microenvironment hydrophobicity during phase transition
- aggregation-induced emission fluorescence probe

C1, C5 and C9 (c = 2.5 mg/mL in NaCl), 8-anilino-1-naphthalenesulfonic acid ammonium salt ( $c = 0.25 \mu \text{mol/mL}$ )









5. NMR study – study of temperature-dependent behavior



$$p = 1 - \{I(T) / [I(T_0) \cdot (T_0 / T)]\}$$

where p is p-fraction, I(T) is the integrated intensity of a signal in the spectrum at the temperature T and  $I(T_0)$  is the integrated intensity of the same signal in the case when no phase separation occurs





#### 5. NMR study – study of temperature-dependent behavior



**C9** ( $c = 2.5 \text{ mg/mL in } D_2O$ )













5. NMR study – study of temperature-dependent behavior













6. Potassium responsiveness

increasing grafting density



dynamic light scattering

(c = 2.5 mg/mL)



atomic force microscopy













# B. In vitro experiments











- corresponds to the immunostimulatory activity of polymer
- chemiluminescence reaction of formed hydrogen peroxide with luminol



 → the oxidative burst response is not influenced by graft length









#### 1. Oxidative burst of leukocytes assay

- corresponds to the immunostimulatory activity of polymer
- chemiluminescence reaction of formed hydrogen peroxide with luminol



# → the oxidative burst response is not influenced by graft length



G3-III



Auricularia auricula-judae



#### 2. Cytotoxicity

 negligible on macrophages RAW 264.7, MCF7 and EL4 cancer cells (AlamarBlue assay)

#### 3. Cellular uptake study using microscopy

incubation with RAW cells



19







#### 4. Tumor necrosis factor $\alpha$ (TNF- $\alpha$ ) production

 using an enzyme-linked immunosorbent assay (ELISA) on the leukocytes isolated from human whole blood



→ optimistic prognosis for cancer treatment



# C. Radiolabeling











#### 1. Radiolabeling with yttrium-90(III)

auricula-judae

| Nuclide           | Decay<br>mode | Energy<br>(MeV) | t <sub>1/2</sub> |
|-------------------|---------------|-----------------|------------------|
| <sup>90</sup> Y   | β-            | 2.28            | 64 h             |
| <sup>177</sup> Lu | β-(γ)         | 0.497           | 160 h            |
| <sup>213</sup> Bi | α, β-         | 5.87            | 46 min           |
| <sup>225</sup> Ac | α             | 5.83            | 10 d             |
| <sup>223</sup> Ra | α             | 5.85            | 11.4 d           |



A = 5 MBq/mg





# D. In vivo experiments







Auricularia auricula-judae



#### 1. Antitumor efficiency

- C57BL/6N mice with murine lymphoma EL4
- groups:

#### 1) Control - no treatment

2) IMMUNO β-glucan-*graft*-POX G3-III 1 mg/mouse

#### 3) RADIO

- POX with <sup>90</sup>Y POX-Y 0.7 mg/4 MBq/mouse

#### 4) IMMUNORADIO

- β-glucan-*graft*-POX with <sup>90</sup>Y G3-III-Y 1 mg/4 MBq/mouse











### In vivo imaging



Images were done by composition of X-ray images (all groups), fluorescence images of the dye Dyomics-615 (IMMUNO and IMMUNORADIO) and Cherenkov radiation images of yttrium-90(III) (RADIO and IMMUNORADIO)





Auricularia auricula-judae



#### 1. Antitumor efficiency

- C57BL/6N mice with murine lymphoma EL4





#### Conclusions



#### A. Polymer synthesis and characterization

β-glucan-*graft*-POX

- successful synthesis of β-glucan-graft-POX
- study of temperature-dependent behavior using DLS and fluorescence m.
- successful modification of β-glucan-graft-POX to bear DOTA and dye at the graft ends
   κ-carrageenan-graft-POX
- successful synthesis of κ-carrageenan-graft-POX
- study of temperature-dependent behavior using DLS, fluorescence m. and NMR



#### B. In vitro experiments

- oxidative burst of the leukocytes is not influenced by graft length
- negligible cytotoxicity, active cellular uptake, production of TNF-α



#### C. Radiolabeling

• successful radiolabeling of β-glucan-*graft*-POX with yttrium-90(III)

#### D. In vivo experiments



- treatment success: 47 % in IMMUNORADIO group
- observed synergistic effect of using IMMUNO- and RADIOtherapy in combination





### Acknowledgement



Lenka Loukotová
Mariia Rabyk
Jan Kučka
Rafal Konefal
Olga Janoušková
Kristýna Venclíková
Anita Hocherl
Daniela Machová



Luděk Šefc Věra Kolářová Pavla Francová Petr Páral Tomáš Heizer ....