

Isothermal Titration Calorimetry (ITC) in cancer nanomedicine

Erik Laurini

MolBNL@UniTS, University of Trieste

erik.laurini@dia.units.it

Schedule:

- ITC Why?
- ITC Principles
- ITC Case studies:

- ITC-1 Anticancer drug / HSA binding study
- ITC-2 Self-assembling ADs for imaging
- ITC-3 AM Self-Assembly Study
- ITC Technical Notes

ITC – Why?

ITC can provide a direct measurment of the heat from the interaction between two molecules in solution.

Label-free/Universal	Broad dynamic range	Information rich	Ease-of-use
 Direct measurement of heat change (almost all reactions) Direct measurement of melting temperature as an indicator of thermal stability (DSC) 	 No molecular weight limitations Native molecules in solution (biological relevance) 	 Rapid results for K_p n, ΔH and ΔS from ITC experiments Determine T_m, ΔH and ΔC_p from DSC experiments 	 No immobilization necessary No/minimal assay development Wide range of solvent/buffer conditions

ITC – Principles

- Calorimetric principles:
 - Heat Flux
 - The heat is allowed to flow out (or into) the cell. The potential difference is recorded as a function of time, and the signal will come back to the baseline (thermal equilibrium).
- Power compensation
 - The sample and reference cells are heated permanently by separate heaters (very low intensity) and there is a feedback system that controls and varies the power supplied to each heater to keep the temperature difference between the cells ≈ 0. When an event happens on the sample cell, the power is increased (decreased) to keep ΔT ≈ 0.

Principal components:

- (i) Titration syringe (ligand solution);
- (ii) Sample cell (protein solution);
- (iii)Reference cell (water or buffer solution)

ITC – Principles

Four (DF)

- Differential power (DP) calculation;
- Sample cell and reference cell in thermal equilibrium ($\Delta T^{\circ} = 0$)

ITC – Principles

- Reference power is applied to both cells \rightarrow power compensation;
- Heat release \rightarrow exothermic reaction;
- Heat absorption \rightarrow endothermic reaction.

ITC - the thermogram (raw data)

- restoring the heat-flux to baseline;
- toward the end of the titration, the heat signal becomes very low;
- saturation by the titrant → only background heat due to unspecific phenomena (i.e., ligand dilution or liquid friction) is observed.

ITC – Data integration

- Direct results :
 - K_d and n (stoichiometry) = inflection point
 - ΔH_{bind} = differences between lower and upper plateaus
- Indirect results :
 - $\Delta G_{\text{bind}} = \text{RTln}K_{\text{d}}$
 - $-T\Delta S_{bind} = \Delta G_{bind} \Delta H_{bind}$

ITC – Binding mechanism

Interaction

- P + L ↔ PL
- K_D = [P][L]/[PL]
- K_A = [PL]/[P][L]
- K_D is inverse of K_A

Thermodynamics

- $\Delta G = RTInK_{D}$
- ΔG = ΔH -TΔS

ΔG is Gibbs free energy change

R is gas constant

T is temperature (Kelvin)

- Primary Enthalpic Contributions
 - Hydrogen bonding and van der Waals interactions
- Primary Entropic Contributions
 - Hydrophobic effect-water release (favorable)
 - Conformational changes and reduction in degrees of freedom (unfavorable)

Overall binding affinity K_0 correlates with IC_{50} or EC_{50} . This is directly related to ΔG , the total free binding energy

 AH, enthalpy is indication of changes in hydrogen and van der Waals bonding

- -TΔ5, entropy is indication of changes in hydrophobic interaction and conformational changes
- n, stoichiometry indicates the ratio of ligand-to-macromolecule binding

ITC – Binding mechanism

Same affinity, different energetics

ITC results are used to gain insights into the mechanism of binding

- Good hydrogen bonding with unfavorable conformational change
- Binding dominated by hydrophobic interaction
- C. Favorable hydrogen bonds and hydrophobic interactions

ITC-1 Anticancer drug / HSA binding study

- Drug binding to HSA significantly affect biological activity
- Binding mechanism of the two B-Raf inhibitors dabrafenib and vemurafenib to HSA
- combined strategy = fluorescence spectroscopy + ITC + Molecular Modeling
- Thermodynamics and kinetics information

ITC-1 Anticancer drug / HSA binding study

- 1:1 stoichiometry + comparable affinity
- within the same binding pocket (subdomain IIIA)
- dabrafenib/HSA complex is more entropically driven
- vemurafenib/HSA assembly is prevalently enthalpic in nature

	∆G kcal/mol	∆H kcal/mol	-ΤΔS kcal/mol	k _a 10 ⁵ M ⁻¹	k _{on} 10 ⁴ M ⁻¹ s ⁻¹	k _{off} 10 ⁻² s ⁻¹	t _r s
DAB	-7.19	+5.12	-12.31	1.86	1.57	8.44	11.8
VEM	-7.25	-5.27	-1.98	2.06	1.12	5.42	18.5

 $k_{\rm a} = k_{\rm on}/k_{\rm off}$ $t_r = 1/k_{\rm off}$

- dabrafenib/HSA has short residence time
- vemurafenib/HSA is provided with a slightly greater residence time.

ITC-2 Self-assembling ADs for imaging

- efficiently deliver contrast or imaging agents
- better and more precise imaging:
 - Improving imaging sensitivity and specificity
 - Reducing toxicity
- an innovative nano-system for:
 - positron emission tomography (PET) imaging
 - single photon emission computed tomography (SPECT) imaging
 - C18 single tail PAMAM-based AD
 - surface of ADs decorated with different radionuclide
 - Ga3+ or Gd3+ or In3+
 - complexed within different macrocyclic chelator
 - NOTA or DOTA cage

Proc Nat Acad Sci USA 2018; 115:11454-11459.

Chem.Comm 2020; 56:301-304.

Small 2020; 2003290.

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

ITC-2 Self-assembling ADs for imaging

- gallium-68 as PET radioisotope with half-life of 68 min
- NOTA as Ga3+ chelator
 - optimal size
 - geometry
 - denticity
- favorable enthalpic and entropic contributions to the chelation
- ITC confirmed:
 - gallium binding thermodynamics
 - occupied NOTA site (n = 4)
- DLS, TEM and MD simulation provided:
 - self-assembly confirmation
 - size (14 nm) and shape (spherical micelles)

ITC-2 Self-assembling ADs for imaging

- Indium-111 as SPECT radioisotope
- DOTA (In-1) or NOTA (In-2) as chelator
- Characterization:
 - ITC
 - DLS
 - TEM
 - Computational Studies

- similar thermodynamics
- both enthalpic and entropic contribution fovorable
- complete site occupation (n=4)

- Gene therapy
- Drug delivery

- Complete thermodynamics of the process:
 - $\Delta G \rightarrow$ spontaneity
 - $\Delta H \rightarrow$ mechanism
 - $T\Delta S \rightarrow$ entropic contribution
- CMC : Critical Micellar Concentration
- N_{agg} : Aggregation Number

- Syringe: SLN of AM at concentration >> CMC.
- Sample Cell: solvent \rightarrow H₂O or buffer
- Investigation of the demicelization process $\rightarrow \Delta H_{demic}$.
- self-assembly is reversible process

 $\rightarrow \Delta H_{demic} = -\Delta H_{mic}$

The ITC thermogram of a demicellization process is characterized by 3 distinct phases:
(i) micelles dissociate into monomers → the heat of the dilution of the monomer is recorded;

- (ii) [AM] increases in the sample cell until reaching the CMC value → formation of micelles;
- (iii) once the self-assembly process is finished \rightarrow only the micellar dilution heat.

From the sigmoidal profile I can exstract:

- (i) Inflection point \rightarrow CMC;
- (ii) First derivative Q vs C \rightarrow more precise CMC;

(iii)Difference between plateaus \rightarrow - ΔH_{mic} .

CMC validation:

! Pyrene Assay

! Conductimeter Assay

! '' ! #\$%&

- N_{agg} = the average number of monomers in a spherical micelle;
- characterized by the two-state reaction model \rightarrow

$$N_{agg} * S = MIC_{Nag}$$

- S = amount of monomer
- MIC_{Nagg} = amount of micelles

• by regression analysis of the normalized ITC integrated data =

$$\frac{dln\left(\left(\frac{d[AM]}{dAM_{TOT}}\right)^{-1}-1\right)}{dln[AM_{TOT}]} = \frac{N_{agg}-1}{N_{agg}} + \frac{\left(N_{agg}-1\right)^2}{N_{agg}} \frac{d[AM]}{d[AM_{TOT}]}$$

- [AM] = is the concentration of the AM molecules in their monomeric state
- $[AM_{TOT}] = total concentration of AM during ITC experiement$
- \rightarrow From the principle of mass conservation : $[AM_{TOT}] = [AM] + N_{agg} * [MIC_{N_{agg}}]$
- Sum of Squares due to Regression (SSR) methods is applied for retrieve N_{agg} from regression analysis

For charged AM:

- $\Delta G_{\rm mic} = -(1+\beta)RT * \ln (1/CMC)$
- β = degree of counterion binding
 - Repeat experiments to calculate CMC at different
 [NaCl] → ionic strength
 - Plot the log of the obtained CMC values vs log [NaCL] There is a linear relationship (lnCMC = $-\beta * \ln[Cl^{-}] + K$)
 - \rightarrow the slope of the data linear regression= β

ΔH_{mic}	$T\Delta S_{mic}$	ΔG_{mic}		
kcal/mol	kcal/mol	kcal/mol		
18.67	28.84	-10.17		
CMC	β	N_{aggf}		
μM^1	(-)	(-)		
11.2	0.65	10.07		

background heat due to unspecific phenomena

SIDE EXPERIMENTS:

- water-in-water titration: heat from stirring
- buffer-in-buffer titration: heat from the protic dissociation
- titrant solubilization: heat from the solubilization of the titrant in the solvent:
 - titrant in syringe (at the same [M] of the "normal" ITC
 - only buffer in the sample cell
 - point by point subtraction

Cleanliness rules!!!

The strength of ITC is that you can see everything

The weakness of ITC is that you can see everything

- 6 out of 11 solving problems in the Troubleshooting Guide for ITC best practice suggest: clean cell and syringe thoroughly
- clean module (automatic)
- Washing cell and syringe after each ITC experiments (10 min)
- Soaking at 65°C the sample cell weekly!

Buffer mismatch

- Different types of buffers can be used (PBS, HEPES, etc.) as ITC is compatible with all aqueous buffers in a range of pH 2–12
- the buffers in the sample cell and in the titration syringe MUST be identical
- otherwise the total heat measured might account for undesired contributions due to buffer mixing and dilution effect

Critical parameters

- Input concentrations are strictly related to the heat integration and the data fitting
 → precise determination of initial concentration in the sample cell and in the syringe
- Required volumes for a single ITC experiment:
 - 208 μ L for the cell (300 μ l for a good manual filling)
 - 36 µL for the syringe (automatic filling)
- Required concentrations for 1:1 stoichiometry complex:
 - $5-50 \mu M$ for the macromolecule in the sample cell
 - 50 500 μ M for the ligand in the syringe
- Required concentrations for self-assembly study:
 - depend from CMC value (inflection point of the sigmoid)
 - can be optimized

Critical parameters

- ITC temperature = set in the range of $2 85 \,^{\circ}\text{C}$
- Injection number: it is a compromise parameter!
 - 12 (3 μ L each) / 18 (2 μ L) / 36 (1 μ L) / 72 (0.5 μ L)
 - more volume = more interaction heat
 - more injections = best fitting
- Injection spacing: the time between each injection
 - 60 600 s: the signal have to return to the baseline
 - mandatory for an optimal heat integration of the peak

Acnowledgements

- Prof. Sabrina Pricl
- Prof. Erik Laurini
- Dr. Domenico Marson
- Dr. Suzana Aulic
- Dr. Maria Russi

Thank you for your kind attention!