
The discovery of high-temperature 
superconductors, the determina-
tion of DNA’s double-helix struc-
ture, the first observations that the 

expansion of the Universe is accelerating — all 
of these breakthroughs won Nobel prizes and 
international acclaim. Yet none of the papers 
that announced them comes anywhere close 
to ranking among the 100 most highly cited 
papers of all time. 

Citations, in which one paper refers to ear-
lier works, are the standard means by which 
authors acknowledge the source of their meth-
ods, ideas and findings, and are often used as a 
rough measure of a paper’s importance. Fifty 
years ago, Eugene Garfield published the Sci-
ence Citation Index (SCI), the first systematic 
effort to track citations in the scientific litera-
ture. To mark the anniversary, Nature asked 
Thomson Reuters, which now owns the SCI, 
to list the 100 most highly cited papers of all 
time. (See the full list at www.nature.com/
top100.) The search covered all of Thomson 
Reuter’s Web of Science, an online version of 
the SCI that also includes databases covering 
the social sciences, arts and humanities, con-
ference proceedings and some books. It lists 
papers published from 1900 to the present day. 

The exercise revealed some surprises, not 
least that it takes a staggering 12,119 citations 
to rank in the top 100 — and that many of the 
world’s most famous papers do not make the 
cut. A few that do, such as the first observation1 

of carbon nanotubes (number 36) are indeed 
classic discoveries. But the vast majority 
describe experimental methods or software 
that have become essential in their fields. 

The most cited work in history, for example, 
is a 1951 paper2 describing an assay to deter-
mine the amount of protein in a solution. It 
has now gathered more than 305,000 cita-
tions — a recognition that always puzzled 
its lead author, the late US biochemist Oli-
ver Lowry. “Although I really know it is not a 
great paper … I secretly get a kick out of the 
response,” he wrote in 1977. 

The colossal size of the scholarly literature 
means that the top-100 papers are extreme out-
liers. Thomson Reuter’s Web of Science holds 
some 58 million items. If that corpus were scaled 
to Mount Kilimanjaro, then the 100 most-cited 
papers would represent just 1 centimetre at the 
peak. Only 14,499 papers — roughly a metre 
and a half ’s worth — have more than 1,000 cita-
tions (see ‘The paper mountain’). Meanwhile, 
the foothills comprise works that have been 
cited only once, if at all — a group that encom-
passes roughly half of the items. 

Nobody fully understands what distin-
guishes the sliver at the top from papers that 
are merely very well known — but research-
ers’ customs explain some of it. Paul Wouters, 
director of the Centre for Science and Technol-
ogy Studies in Leiden, the Netherlands, says 
that many methods papers “become a standard 
reference that one cites in order to make clear 

to other scientists what kind of work one is 
doing”. Another common practice in science 
ensures that truly foundational discover-
ies — Einstein’s special theory of relativity, 
for instance — get fewer citations than they 
might deserve: they are so important that they 
quickly enter the textbooks or are incorporated 
into the main text of papers as terms deemed 
so familiar that they do not need a citation. 

Citation counts are riddled with other con-
founding factors. The volume of citations has 
increased, for example — yet older papers have 
had more time to accrue citations. Biologists 
tend to cite one another’s work more frequently 
than, say, physicists. And not all fields produce 
the same number of publications. Modern bib-
liometricians therefore recoil from methods as 
crude as simply counting citations when they 
want to measure a paper’s value: instead, they 
prefer to compare counts for papers of similar 
age, and in comparable fields. 

Nor is Thomson Reuters’ list the only rank-
ing system available. Google Scholar compiled 
its own top-100 list for Nature. It is based on 
many more citations because the search engine 
culls references from a much greater (although 
poorly characterized) literature base, including 
from a large range of books. In that list, avail-
able at www.nature.com/top100, economics 
papers have more prominence. Google Schol-
ar’s list also features books, which Thomson 
Reuters did not analyse. But among the science 
papers, many of the same titles show up. 

Yet even with all the caveats, the old-fash-
ioned hall of fame still has value. If nothing 
else, it serves as a reminder of the nature of sci-
entific knowledge. To make exciting advances, 
researchers rely on relatively unsung papers to 
describe experimental methods, databases and 
software.

Here Nature tours some of the key methods 
that tens of thousands of citations have hoisted 
to the top of science’s Kilimanjaro — essential, 
but rarely thrust into the limelight. 

BIOLOGICAL TECHNIQUES
For decades, the top-100 list has been domi-
nated by protein biochemistry. The 1951 
paper2 describing the Lowry method for quan-
tifying protein remains practically unreachable 
at number 1, even though many biochemists 
say that it and the competing Bradford assay3 
— described by paper number 3 on the list — 
are a tad outdated. In between, at number 2, 
is Laemmli buffer4, which is used in a differ-
ent kind of protein analysis. The dominance 
of these techniques is attributable to the high 
volume of citations in cell and molecular biol-
ogy, where they remain indispensable tools. 

At least two of the biological techniques 
described by top-100 papers have resulted in 
Nobel prizes. Number 4 on the list describes 
the DNA-sequencing method5 that earned 
the late Frederick Sanger his share of the 
1980 Nobel Prize in Chemistry. Number 63 
describes polymerase chain reaction 
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10,000+
CITATIONS
(148 papers)

Watson and Crick 
on structure of 

DNA (1953)
5,207 citations

Hirsch proposes 
the h index to 
measure scienti�c 
productivity (2005)
1,797 citations

Farman, Gardiner &  
Shanklin discover the 

ozone hole (1985)
1,871 citations

TOP-100
PAPERS

THE  PAPER
MOUNTAIN

If you were to print out just the �rst page 
of every item indexed in Web of Science, 
the stack of paper would reach almost to 

the top of Mt Kilimanjaro. Only the top 
metre and a half of that stack would have 
received 1,000 citations or more, and just 
a centimetre and a half would have been 
cited more than 10,000 times. All of the 

top 100 are cited more than 12,000 times, 
besting some of the most recognizable 

scienti�c discoveries in history.

TOP-10 PAPERS
Just 3 papers have received more than 100,000 
citations, putting them well ahead of the rest. These 
runaway hits all cover biological lab techniques, which 
in general dominate the list of most-cited literature, 
including 7 of the top 10.   

Data provided by Thomson Reuters/Web of Science. Individual paper citation �gures 
extracted 7 October 2014. Distribution of citations in database: 19 September 2014
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To explore the full list, and 
to see each paper’s citation 
history over time, visit 
nature.com/top100
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Protein measurement with the folin phenol reagent (1951)
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Cleavage of structural proteins during the assembly of head of
the bacteriophage T4 (1970)

A rapid and sensitive method for the quantitation of microgram
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Single-step method of RNA isolation by acid guanidinium
thiocyanate-phenol-chloroform extraction (1987)

Electrophoretic transfer of proteins from polyacrylamide gels
to nitrocellulose sheets: procedure and some applications (1979)

Development of the Colle–Salvetti correlation-energy formula
into a functional of the electron density (1988)

Density-functional thermochemistry. III. The role of exact
exchange (1993)

A simple method for the isolation and puri�cation of total
lipides from animal tissues (1957)

CLUSTAL W: improving the sensitivity of progressive multiple
sequence alignment through sequence weighting, position-
speci�c gap penalties and weight matrix choice (1994)
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(PCR)6, a method for copying segments of 
DNA that earned US biochemist Kary Mul-
lis the prize in 1993. By helping scientists to 
explore and manipulate DNA, both methods 
have helped to drive a revolution in genetic 
research that continues to this day.

Other methods have received less public 
acclaim, but are not without their rewards. In 
the 1980s, the Italian cancer geneticist Nico-
letta Sacchi linked up with Polish molecular 
biologist Piotr Chomczynski in the United 
States to publish7 a fast, inexpensive way to 
extract RNA from a biological sample. As it 
became wildly popular — currently, it is num-
ber 5 on the list — Chomczynski patented 
modifications on the technique and built a 
business out of selling the reagents. Now at 
the Roswell Park Cancer Institute in Buffalo, 
New York, Sacchi says that she received little 
in the way of monetary rewards, but takes sat-
isfaction from seeing great discoveries built on 
her work. The technique played a part in the 
explosive growth in the study of short RNA 
molecules that do not code for protein, for 
example. “That is what I would consider, sci-
entifically speaking, a great reward,” she says.

BIOINFORMATICS
The rapid expansion of genetic sequencing 
since Sanger’s contribution has helped to boost 
the ranking of papers describing ways to ana-
lyse the sequences. A prime example is BLAST 
(Basic Local Alignment Search Tool), which 
for two decades has been a household name 
for biologists wanting to work out what genes 
and proteins do. Users simply have to open the 
program in a web browser and plug in a DNA, 
RNA or protein sequence. Within seconds, they 
will be shown related sequences from thou-
sands of organisms — along with information 
about the function of those sequences and even 
links to relevant literature. So popular is BLAST 
that versions8,9 of the program feature twice on 
the list, at spots 12 and 14. 

But owing to the vagaries of citation habits, 
BLAST has been bumped down the list by 
Clustal, a complementary programme for 
aligning multiple sequences at once. Clustal 
allows researchers to describe the evolutionary 
relationships between sequences from differ-
ent organisms, to find matches among seem-
ingly unrelated sequences and to predict how 
a change at a specific point in a gene or pro-
tein might affect its function. A 1994 paper10 
describing ClustalW, a user-friendly version 
of the software, is currently number 10 on the 
list. A 1997 paper11 on a later version called 
ClustalX is number 28.

The team that developed ClustalW, at the 
European Molecular Biology Laboratory in 
Heidelberg, Germany, had created the pro-
gram to work on a personal computer, rather 
than a mainframe. But the software was trans-
formed when Julie Thompson, a computer sci-
entist from the private sector, joined the lab in 
1991. “It was a program written by biologists; 

I’m trying to find a nice way to say that,” says 
Thompson, who is now at the Institute of 
Genetics and Molecular and Cellular Biology 
in Strasbourg, France. Thompson rewrote the 
program to ready it for the volume and com-
plexity of the genome data being generated at 
the time, while also making it easier to use. 

The teams behind BLAST and Clustal are 
competitive about the ranking of their papers. 
It is a friendly sort of competition, however, 
says Des Higgins, a biologist at University Col-
lege Dublin, and a member of the Clustal team. 
“BLAST was a game-changer, and they’ve 
earned every citation that they get.”

PHYLOGENETICS
Another field buoyed by the growth in genome 
sequencing is phylogenetics, the study of evo-
lutionary relationships between species. 

Number 20 on the list is a paper12 that 
introduced the “neighbor-joining” method, 
a fast, efficient way of placing a large number 
of organisms into a phylogenetic tree accord-
ing to some measure of evolutionary distance 
between them, such as genetic variation. It 
links related organisms together one pair at a 
time until a tree is resolved. Physical anthro-
pologist Naruya Saitou helped to devise the 
technique when he joined Masatoshi Nei’s lab 
at the University of Texas in Houston in the 
1980s to work on human evolution and molec-
ular genetics, two fields that were starting to 
burst at the seams with information. 

“We physical anthropologists were facing 
kind of the big data of that time,” says Saitou, 
now at Japan’s National Institute of Genetics 
in Mishima. The technique made it possible 
to devise trees from large data sets without 
eating up computer resources. (And, in a nice 
cross-fertilization within the top-100, Clustal’s 
algorithms use the same strategy.)

Number 41 on the list is a description13 of 
how to apply statistics to phylogenies. In 1984, 

evolutionary biologist Joe Felsenstein of the 
University of Washington in Seattle adapted a 
statistical tool known as the bootstrap to infer 
the accuracy of different parts of an evolution-
ary tree. The bootstrap involves resampling data 
from a set many times over, then using the vari-
ation in the resulting estimates to determine the 
confidence for individual branches. Although 
the paper was slow to amass citations, it rapidly 
grew in popularity in the 1990s and 2000s as 
molecular biologists recognized the need to 
attach such intervals to their predictions.

Felsenstein says that the concept of the boot-
strap14, devised in 1979 by Bradley Efron, a 
statistician at Stanford University in California, 
was much more fundamental than his work. 
But applying the method to a biological prob-
lem means it is cited by a much larger pool of 
researchers. His high citation count is also a 
consequence of how busy he was at the time, 
he says: he crammed everything into one paper 
rather than publishing multiple papers on the 
topic, which might have diluted the number 
of citations each one received. “I was unable to 
go off and write four more papers on the same 
thing,” he says. “I was too swamped to do that, 
not too principled.”

STATISTICS 
Although the top-100 list has a rich seam of 
papers on statistics, says Stephen Stigler, a 
statistician at the University of Chicago in Illi-
nois and an expert on the history of the field, 
“these papers are not at all those that have been 
most important to us statisticians”. Rather, they 
are the ones that have proved to be most use-
ful to the vastly larger population of practising 
scientists. 

Much of this crossover success stems from 
the ever-expanding stream of data coming out 
of biomedical labs. For example, the most fre-
quently cited statistics paper (number 11) is a 
1958 publication15 by US statisticians Edward 
Kaplan and Paul Meier that helps researchers 
to find survival patterns for a population, such 
as participants in clinical trials. That intro-
duced what is now known as the Kaplan–Meier 
estimate. The second (number 24) was Brit-
ish statistician David Cox’s 1972 paper16 that 
expanded these survival analyses to include 
factors such as gender and age. 

The Kaplan–Meier paper was a sleeper hit, 
receiving almost no citations until comput-
ing power boomed in the 1970s, making the 
methods accessible to non-specialists. Simplic-
ity and ease of use also boosted the popular-
ity of papers in this field. British statisticians 
Martin Bland and Douglas Altman made the 
list (number 29) with a technique17 — now 
known as the Bland–Altman plot — for visu-
alizing how well two measurement methods 
agree. The same idea had been introduced by 
another statistician 14 years earlier, but Bland 
and Altman presented it in an accessible way 
that has won citations ever since. 

The oldest and youngest papers in 
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the statistics group deal with the same 
problem  —  multiple comparisons of 
data — but from very different scientific 
milieux. US statistician David Duncan’s 1955 
paper18 (number 64) is useful when a few 
groups need to be compared. But at number 
59, Israeli statisticians Yoav Benjamini and 
Yosef Hochberg’s 1995 paper19 on controlling 
the false-discovery rate is ideally suited for data 
coming from fields such as genomics or neuro-
science imaging, in which comparisons num-
ber in the hundreds of thousands — a scale that 
Duncan could hardly have imagined. As Efron 
observes: “The story is one of the computer 
slowly, then not so slowly, making its influence 
felt on statistical theory as well as on practice.”

DENSITY FUNCTIONAL THEORY 
When theorists want to model a piece of matter 
— be it a drug molecule or a slab of metal — 
they often use software to calculate the behav-
iour of the material’s electrons. From this 
knowledge flows an understanding of numer-
ous other properties: a protein’s reactivity, for 
instance, or how easily Earth’s liquid iron outer 
core conducts heat.

Most of this software is built on density 
functional theory (DFT), easily the most 
heavily cited concept in the physical sciences. 
Twelve papers on the top-100 list relate to it, 
including 2 of the top 10. At its heart, DFT 
is an approximation that makes impossible 
mathematics easy, says Feliciano Giustino, a 
materials physicist at the University of Oxford, 
UK. To study electronic behaviour in a silicon 
crystal by taking account of how every electron 
and every nucleus interacts with every other 
electron and nucleus, a researcher would need 
to analyse one sextillion (1021) terabytes of 
data, he says — far beyond the capacity of any 
conceivable computer. DFT reduces the data 
requirement to just a few hundred kilobytes, 
well within the capacity of a standard laptop. 

Theoretical physicist Walter Kohn led the 
development of DFT half a century ago in 
papers20,21 that now rank as numbers 34 and 
39. Kohn realized that he could calculate a sys-
tem’s properties, such as its lowest energy state, 
by assuming that each electron reacts to all the 
others not as individuals, but as a smeared-
out average. In principle, the mathematics 
are straightforward: the system behaves like 
a continuous fluid with a density that varies 
from point to point. Hence the theory’s name. 

But a few decades passed before research-
ers found ways to implement the idea for real 
materials, says Giustino. Two22,23 top-100 
papers are technical recipes on which the most 
popular DFT methods and software packages 
are built. One (number 8) is by Axel Becke, 
a theoretical chemist at Dalhousie Univer-
sity in Halifax, Canada, and the other (num-
ber 7) is by US-based theoretical chemists 
Chengteh Lee, Weitao Yang and Robert Parr. 
In 1992, computational chemist John Pople 
(who would share the 1998 Nobel prize with 

Kohn) included a form of DFT in his popular 
Gaussian software package.

Software users probably cite the original 
theoretical papers even if they do not fully 
understand the theory, says Becke. “The the-
ory, mathematics and computer software are 
specialized and are the concern of quantum 
physicists and chemists,” he says. “But the 
applications are endless. At a fundamental 
level, DFT can be used to describe all of chem-
istry, biochemistry, biology, nanosystems and 
materials. Everything in our terrestrial world 
depends on the motions of electrons — there-
fore, DFT literally underlies everything.” 

CRYSTALLOGRAPHY 
George Sheldrick, a chemist at the University 
of Göttingen in Germany, began to write soft-
ware to help solve crystal structures in the 
1970s. In those days, he says, “you couldn’t get 
grant money for that kind of project. My job 
was to teach chemistry, and I wrote the pro-
grams as a hobby in my spare time.” But over 
40 years, his work gave rise to the regularly 
updated SHELX suite of computer programs, 
which has become one of the most popular 
tools for analysing the scattering patterns 
of X-rays that are shot through a crystal — 
thereby revealing the atomic structure. 

The extent of that popularity became 
apparent after 2008, when Sheldrick pub-
lished a review paper24 about the history of 
the system, and noted that it might serve as 
a general literature citation whenever any 
of the SHELX programs were used. Readers 
followed his advice. In the past 6 years, that 
review paper has amassed almost 38,000 cita-
tions, catapulting it to number 13 and making 
it the highest-ranked paper published in the 
past two decades. 

The top-100 list is scattered with other tools 
essential to crystallography and structural 
biology. These include papers describing the 
HKL suite25 (number 23) for analysing X-ray 
diffraction data; the PROCHECK programs26 
(number 71) used to analyse whether a pro-
posed protein structure seems geometrically 
normal or outlandish; and two programs27,28 
used to sketch molecular structures (numbers 
82 and 95). These tools are the “bricks and 
mortar” for determining crystal structures, 
says Philip Bourne, associate director for data 
science at the US National Institutes of Health 
in Bethesda, Maryland.

An unusual entry, appearing at number 22, 
is a 1976 paper29 from Robert Shannon — a 
researcher at the giant chemical firm DuPont 
in Wilmington, Delaware, who compiled 
a comprehensive list of the radii of ions in a 
series of different materials. Robin Grimes, a 
materials scientist at Imperial College Lon-
don, says that physicists, 
chemists and theorists 
still cite this paper when 
they look up values of 
ionic size, which often 

correlate neatly with other properties of a 
substance. This has made it the highest for-
mally-cited database of all time.

“We often cite these kinds of papers almost 
without thinking about it,” says Paul Fossati, 
one of Grimes’s research colleagues. The same 
could be said for many of the methods and 
databases in the top 100. The list reveals just 
how powerfully research has been affected 
by computation and the analysis of large data 
sets. But it also serves as a reminder that the 
position of any particular methods paper or 
database at the top of the citation charts is also 
down to luck and circumstance. 

Still, there is one powerful lesson for 
researchers, notes Peter Moore, a chemist at 
Yale University in New Haven, Connecticut. “If 
citations are what you want,” he says, “devising 
a method that makes it possible for people to 
do the experiments they want at all, or more 
easily, will get you a lot further than, say, dis-
covering the secret of the Universe”. ■ 

Richard Van Noorden is a reporter for 
Nature based in London, Brendan Maher 
is an editor for Nature based in New York, 
and Regina Nuzzo is a writer based in 
Washington DC.
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