Mass Spectrometry for Nanovectors Characterization

- Ionization Sources
- Analyzers
- Tandem Mass Spectrometry
- Ion Mobility Mass Spectrometry
 - Principles et Definitions
 - Instrumentation
 - Applications
- Conclusions

Mass Spectrometry

Distinguish between ionized molecules depending on...

Mass Spectrometry

Mass Spectrometry

Evaporation-Chamber

Capillary

 N_2

Electrospray Ionization (ESI)

- The solvated analyte is fed through a capillary tube with very high charge differential
- The charged droplet evaporates and ionizes the analyte

High Resolution Mass Spectrometry

Fast method to determine the elementary composition (error <5ppm)</p>

Use of low quantities

Allows analysis of all types of organic molecules

High Resolution Mass Spectrometry

High Resolution Mass Spectrometry

Tandem Mass Spectrometry

Tandem Mass Spectrometry

Useful tool for structural characterization

Appropriate for structural characterization of highly symmetrical molecules: polymers, dendrimers, sugars

Suitable for structural anomalies screening

Jean J.M. Fréchet and Donald A. Tomalia Dendrimers and Other Dendritic Systems (2001) John Wiley & Sons *George R. Newcome et al.* Dendrimers and Dendrons (2002) John Wiley & Sons

Jean J.M. Fréchet and Donald A. Tomalia Dendrimers and Other Dendritic Systems (2001) John Wiley & Sons *George R. Newcome et al.* Dendrimers and Dendrons (2002) John Wiley & Sons

J.M. Fréchet and D. A. Tomalia : Dendrimers and Other Dendritic Systems (2001) John Wiley & Sons G. R. Newcome et al: Dendrimers and Dendrons (2002) John Wiley & Sons

Goal: Detection and characterization of the defective molecules

Tintaru et al. Int J Mass Spectrom, **12**511, 308, 56. *Tintaru et al.* Rapid Commun Mass Spectrom 2010, 16, 2207.

Tintaru et al. Int J Mass Spectrom, 2011, 308, 56. *Tintaru et al.* Rapid Commun Mass Spectrom 2010, 16, 2207.

Complementary approach to non-covalently dendrimer-drug systems

Drug conjugation on the dendrimer arms

- High drug loading
- Can be much easier to control and predict in complex media
- Overcome the problem of poor solubility of triazole nucleoside
- Preserve the tumor targeting properties of nanosystems

MS/MS Study of impurity A

MS/MS Study of impurity A

MS/MS Study of impurity A

Fragmentation rules \rightarrow used for the structural characterization of the two impurities B and C

Structure of the "defective" molecules

Amphiphilic Dendrimers

Main goal: Highest sample purity required for any for biological application

Lyu Z et al, Acc. Chem. Res. 2020, 53, 12, 2936-2949

Nanotheranostics

Imaging

PET

Positron **E**mission **T**omography Gamma rays emitted indirectly by a positro emitting radioligand

Single Photon Emission Computed Tomography Gamma-emitting radioisotope

Magnetic Resonance Imaging Magnetic relaxation of water and fat tiss

Imaging

PET Positron Emission Tomography Gamma rays emitted indirectly by a positronemitting radioligand

Magnetic Resonance Imaging Magnetic relaxation of water and fat tissues

NOTA-Amphiphilic Dendrimers

NOTA-Amphiphilic Dendrimers

NOTA-Amphiphilic Dendrimers

Ga^{III} - NOTAAmphiphilic Dendrimers

Ga^{III} - NOTAAmphiphilic Dendrimers

Ga^{III} - NOTAAmphiphilic Dendrimers

PET experiments

Migration of the dendrimer in the cancerous tissue after 10min

41 *Garrique P et al.* PNAS. 2018, 26, 8594–8603

Ion Mobility: a New Dimension for MS

IMS separates ions based on their mobility through a neutral gas

The mobility of an ionized molecule depends on ...

HRNAL

http://bowers.chem.ucsb.edu/theory_analysis/ion-mobility/index.shtml

Drift time (ms)

• Mobility of an ion depends on its WEIGHT, CHARGE STATE & SHAPE

SD Pringle, K Giles, JL Wildgoose, JP Williams, SE Slade, K Thalassinos, RH Bateman, MT Bowers, JH Scrivens Int. J. Mass Spectrom. 2007, 261, 1-12

Ion Mobility – Mass Spectrometry

Ion Mobility – Mass Spectrometry

Distinguish between different conformations of the same molecule

Isomers separation

Discrimination between isobaric species with different shape

Isomers Separation

Isobaric amino acids differentiation

Knapman et al., Int J Mass Spectrom (2010) 298, 17-23.

Clowers BH et al., JASMS (2005) 16, 660.

T Wyttenbach, NA Pierson, DE Clemmer, MT Bowers Annl. Rev. Phys. Chem. 2014, 65, 175-196

IMS Applications Peptides: Bradikinin

T Wyttenbach, NA Pierson, DE Clemmer, MT Bowers Annl. Rev. Phys. Chem. 2014, 65, 175-196

A state

IMS Applications Proteins: Ubiquitin

T Wyttenbach, NA Pierson, DE Clemmer, MT Bowers Annl. Rev. Phys. Chem. 2014, 65, 175-196

Tintaru et al. International Journal of Mass Spectrometry (2013) 354, 235.

Tintaru et al. International Journal of Mass Spectrometry (2013) 354, 235.

In^{III}-NOTA Amphiphilic Dendrimers

In^{III}-NOTA Amphiphilic Dendrimers

In^{III}-DOTA Amphiphilic Dendrimers

Ling D et al. ChemComm 2019, in press

Hybrids : Dendrimer + Polymer (PAMAM) (PEO)

- Micelles-like compounds \rightarrow highly medium dependent
- High flexibility
- Larger intrinsic cavities

Tintaru et al. Anal Chim Acta (2014) 808, 163.

novel drug delivery systems

Polymer Fragmentation Dendrimer Fragmentation

Conclusions

Mass Spectrometry powerful technique:

Accurate Mass Measurements

Structural Characterization

Isomers Separation

Differentiation Based on Ions Shape

Acknowledgments

	Spectropole	UNIVERSITÀ DEGLI STUDI DI TRIESTE
Dr. Ling PENG	Dr. Christophe CHENDO	Pr. Sabrina PRICL
Dr. Gilles QUELEVER	Dr. Valérie MONNIER	Pr. Erik LAURINI
Dr. Zhenbin LYU	Dr. Fabio ZIARELLI	
Dr. Mei CONG		
Dr. Jingjie TANG		
Dr. Adela HUANG		EUROPEAN COOPERATION
Aix∗Marse	ille	
universi	té	
