

Steady-state fluorescence quenching method for evaluation of nano-bio interactions

Rinea Barbir, mag.med.biochem.

Institute for Medical Research and Occupational Health, Zagreb, Croatia

Objectives

- Protein corona
 - Meaning
 - Importance
- Methods for evaluation of protein corona
- Steady-state fluorescence quenching
 - Theoretical background
 - Stern-Volmer model
 - Interference Inner filter effect
- Our research
 - Aim
 - Results
- Conclusion

Protein corona (PC)

- Dynamic biomolecular layer
- Composition varies depending on the physicochemical properties of the nanoparticles
- Composition on the same type of NPs changes in cancerous vs. noncancerous patient samples
- Changes nanoparticles identity and conformation of proteins
- The mechanisms of biomolecular corona formation need to be elucidated

Analytical methods for evaluating nano-bio interactions

Fluorescence

Stern-Volmer model

$$\tau_0$$
 = 5 ns

Static quenching

$$k_q$$
 < 2.0×10¹⁰ M⁻¹s⁻¹

Dynamic quenching

$$k_q > 2.0 \times 10^{10} \text{ M}^{-1} \text{s}^{-1}$$

Stern-Volmer model

$$\log\left(\frac{F_0 - F}{F}\right) = \log K_b + n \log[NP]$$

 $log K_b$ – logarithmic value of the binding constant

n value – Hills coefficient

n > 1 cooperative binding

n < 1 anti-cooperative binding

Inner-filter effect

Avoding inner filter effect:

- Small concentrations (A < 0.1)
- Reducing the path length of the light
- Changing the λ_{ex}

$$F_{corr} = F_{obs} \times e^{\frac{A_{ex} + A_{em}}{2}}$$

Our research - aim

- Development of nano-bio sensors for early cancer diagnostics (changes in glycan profile in patological conditions)
- to investigate the influence of glycosylation and different interactions and formation of the protein corona

PEG

GSH

Citrate

PEG coated AuNP of different shapes

Results – influence of size and shape

Results – influence of coating

Circular dichroism (CD) - size

Circular dichroism (CD) - coating

Circular dichroism (CD) - shape

Future research

Conclusion

- first study which evaluated the influence of glycosylation status of proteins on the formation of biomolecular corona
- nano-bio interactions are highly dependent on multiple factors
- glycosylation can have a significant impact on biomolecular corona formation and thus on the biological fate of nanoparticles in the body

Acknowledgements

Short Term Scientific Mission (STSM) grants 18.02 – 06.04.2019.

Institute for Medical Research and Occupational Health, Zagreb, Croatia

Dr Ivana Vinković Vrček

Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas (CSIC) & CIBER-BBN, Zaragoza, Spain

Dr Jesús Martínez de la Fuente Dr Rafael Martín-Rapún Rafael Ramírez-Jiménez

Croatian Science Foundation grant IP-2016-06-2436