

COST ACTION CA 17140 **NANO2CLINIC** CANCER NANOMEDICINE - FROM THE BENCH TO THE BEDSIDE

Old drugs in new nanomedicines for gastrointestinal tumors

Bruno Sarmento

- facebook.com/bsarmentoteam
- linkedin.com/in/bsarmentoteam
- @brunocsarmento

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

1

Estimated number of incident cases and deaths worldwide, both sexes, all ages

Colorectal cancer

Worldwide

- 3rd most common
- 2nd most deadly

Over 1.9 million new cases in 2020 and **0.9 million deaths** in 2020

Colorectal cancer

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

4

Colorectal cancer

A11/00

Treatment regimens

- FOLFOX: leucovorin, 5-FU, and oxaliplatin
- FOLFIRI: leucovorin, 5-FU, and irinotecan
- CAPEOX or CAPOX: capecitabine and oxaliplatin
- FOLFOXIRI: leucovorin, 5-FU, oxaliplatin, and irinotecan
- One of the above combinations plus either a drug that targets VEGF (bevacizumab,

ziv-aflibercept or ramucirumab) or a drug targets EGFR (cetuximab or panitumumab)

Colorectal cancer

- Anti-cancer chemotherapic drugs are, nowadays, highly effective. Cancer have high

cure rates when detected early and treated according to best practices

- But:

A11/00

- The lack of selectivity compromise the viability of normal cells
- Most of anticancer drugs present solubility or permeability issues, requiring excipients with toxicological drawbacks

Nanotechnology has provided the possibility of delivering drugs to specific cells in a

tailored and engineered manner

Nanomedicines for modulating cancer

A11/00

Cell surface receptor overexpression

In need of advanced technologies for drug/diagnostic delivery

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Adapted from nagpurtoday.in and National Cancer Institute

A11/00

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Almeida, A., et al., (2020), Materials and Science Engineering C, 2020

	Size	Ddl	Zeta potential	DL (%)	AE (%)
	(nm)	Pai	(mV)		
Unloaded		0.233 ± 0.025	+ 33.7 ± 1.8	0.0	-
mPEG-CS-OA	13/ ± 5				
CPT-loaded	146 + 0			5.0	
mPEG-CS-OA	PEG-CS-OA		+ 41.0 ± 3.0	5.0	//.0 工 /./

TEM images of empty (\mathbf{A}) and CPT-loaded micelles (\mathbf{B})

Almeida, A., et al., (2020), Materials and Science Engineering C, 2020

A11/00

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

10

A11/00

Colorectal cancer 3D models

CRC multicellular tumor spheroids model

1) Develop model closer to TME 2) Study interaction of NPs and antiproliferative ability

3) Study macrophage polarization

T. Bauleth-Ramos et al., J Controlled Rel, 323, 398-411, 2020

CRC multicellular tumor spheroids model

C	7 spheroid	constitution
	Cells	%
	Tumor cells	90.8±2.4
	Fibroblasts	5.6±1.6
	Macrophages	7.5±1.2

14

- Fibronectin production by HIF
- Necrotic core and viable outer rim

T. Bauleth-Ramos et al., J Controlled Rel, 323, 398-411, 2020

A11/00

- Spatial organization
- Majority of epithelial cells

Cell viability after 72 h of incubation with (left) free CPT and (right) CPT-loade in ell static co 21-HT25 MTX and HCT116 cell lines

Cytocompatibility on a 3D spheroid model

Cytocompatibility of free CPT, CPT-loaded micelles and empty micelles against PBMCs

with free CPT. CPT-loaded micelles

15

Non-specific Fab or mAb used as negative controls

A11/00

Kennedy *et al*, Pharmacology and Therapeutics, 2017;177:129-45

PI GA NPs	РТХ	Z-average	polydispersity	Zeta Potential
		(size <i>,</i> nm)	index (PdI)	(charge, mV)
v6 Fab-PLGA	-	379 ± 48	0.40 ± 0.05	-19.9 ± 0.4
	+	293 ± 15	0.32 ± 0.04	-20.0 ± 0.4
(-) Fab-PLGA	-	234 ± 27	0.21 ± 0.04	-18.2 ± 2.0
	+	234 ± 34	0.22 ± 0.06	-19.6 ± 0.1
bare PLGA	-	205 ± 6	0.16 ± 0.01	-15.6 ± 0.8
	+	217 ± 10	0.24 ± 0.03	-17.4 ± 0.1

TEM images of the v6 Fab- (a and b) and bare (c and d) PLGA NPs. a and c = 25,000X magnification (scale bar = 0.5 μ m). b and d = 120,000X magnification (scale bar = 100 nm).

Kennedy et al, Acta Biomaterialia, 81, 208-218, 2018

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Kennedy et al, Acta Biomaterialia, 81, 208-218, 2018

A11/00

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Kennedy et al, Acta Biomaterialia, 81, 208-218, 2018

A11/00

A11/00

CD44v6 as target for functional nanoparticles

Confocal microscopy of v6 Fab-PLGA NP binding to MKN74-CD44v6 tumor sections

v6 Fab-PLGA NPs

(-) Fab PLGA NPs

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Kennedy et al, Acta Biomaterialia, 81, 208-218, 2018

CD44v6 as target for anti-angiogenic nanoparticles

Produce PLGA-PEG nanoparticles loaded with bevacizumab and functionalized with a human antibody fragment with specificity for CD44v6

A11/00 CD44v6 as target for anti-angiogenic nanoparticles

Formulation	BVZ	Z-average (size, nm)	Polydispersit y Index (PdI)	Zeta Potential (charge, mV)	NPs
Bare PLGA-PEG	-	124.1 ± 0.1	0.098 ± 0.015	-4.5 ± 0.2	SA-PEG
NPs	+	183.5 ± 4.9	0.388 ± 0.044	-6.4 ± 1.1	oty PLG
(-) Fab-PLGA-PEG	-	167.2 ± 2.5	0.235 ± 0.005	-6.1 ± 0.8	Emp
NPs	+	253.5 ± 1.4	0.353 ± 0.003	-9.8 ± 0.1	NPs
v6 Fab-PLGA-PEG	-	245.4 ± 2.9	0.186 ± 0.013	-8.2 ± 0.5	A-PEG
NPs	+	345.8 ± 16.4	0.382 ± 0.072	-12.0 ± 0.9	b-PLG/
Dilution 1:100 NaCl pH 7.4					
					Empt

Functionalization and bevacizumab encapsulation increases size and PdI

INSTITUTO DE INVESTIGAÇÃO 22 E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Baião et al, Biomater. Sci., 8, 3720–3729, 2020

Maintenance of bevacizumab structure after encapsulation

NP out

2

Time (month)

360-

340 335

0

Fluorescence excitation

rescence בא מצוחעות (חח) ני גי

6-month long-term stability

EM SAÚDE UNIVERSIDADE DO PORTO 23

F. Sousa et al., Acta Biomat., 2018, 78

F. Sousa et al., Sci. Rep. 2017, 7, 3736

Bevacizumab bioactivity after encapsulation

HUVEC cell line Biological activity of bevacizumab was maintained even with a slow release profile from PLGA NP.

F. Sousa et al., Sci. Rep. 2017, 7, 3736

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

24

A11/00 **CD44v6** as target for anti-angiogenic nanoparticles

(A) Surface binding

MKN74-CD44std MKN74-CD44v6+

(B) Cellular uptake

MKN74-CD44std

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Baião et al, Biomater. Sci., 8, 3720–3729, 2020

MKN74-CD44v6+ cells

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Baião et al, Biomater. Sci., 8, 3720–3729, 2020

Immunosuppressive mechanisms in the CRC

INSTITUTO DE INVESTIGAÇÃO E INOVAÇÃO EM SAÚDE UNIVERSIDADE DO PORTO

Silveira et al, Biomater. Sci., 9, 3228-3243, 2021

A11/00

In summary...

A11/00

- Nanotechnology is a key enabling technology with potential to modulate the biopharmaceutics of anticancer drugs
- Nanoparticles can be proposed to encapsulate and delivery a wide variety of anticancer drugs with solubility/permeability issues, relevant in cancer treatment, namely in colorectal cancer
- Nanoparticles can be easily functionalized in order to develop target nanosystems, with superior ability for specific cellular moieties

Nanotechnology has provided the possibility of delivering drugs to specific cells in a tailored and engineered manner