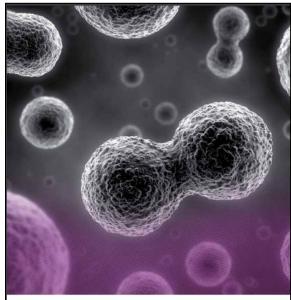


Nanotechnology Industries Association


Regulatory aspects of Clinical translation of nano-enabled products

Blanca Suarez-Merino blanca.suarez@nanotechia.org

Nano2Clinic 03.03.2023

A missile against cancer

nanother

polymer nanomaterials into nanocarriers via biofunctionalisation (the linking of antibodies rigorously testing toxicity, biocompatibility & ligands for detection), the binding of tumour efficacy and biodistribution as an integra cells, and the linking, delivery and release part of the selection process in order to of therapeutic agents to treat the targeted tumour cells

Nanother aims to successfully transform Nanother aims to select the best nanocarriers throughout the project by continue developing only the most efficient biocompatible and least toxic nanoparticle The nanocarriers selected will be further developed and scaled-up, giving future exploitable nanoproducts.

EL CORREO

Sociedad Sucesos Educación Salud Premios Fronteras del Conocimiento Cambio Climático

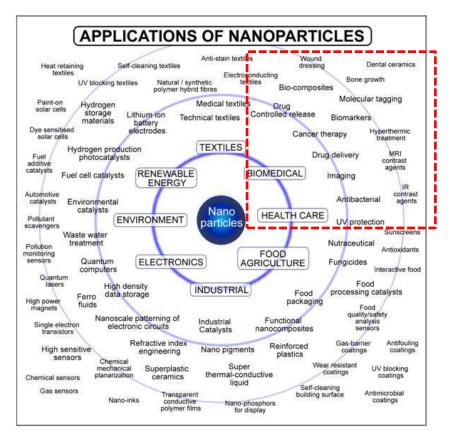
Un misil contra el cáncer

Un grupo de investigación europeo liderado por una empresa vasca trabajará en el desarrollo de una nueva medicación antitumoral más efectiva y menos agresiva

FERMÍN APEZTEGUIA I BILBAO Miércoles, 22 octubre 2008, 09:48

...

Un grupo de 18 empresas europeas liderado por una firma vasca busca una nueva medicación contra el cáncer más efectiva y menos agresiva. El consorcio, apadrinado por la Unión Europea, trabaja en el desarrollo de un fármaco capaz de detectar los tumores y destruirlos sin causar daños colaterales en el organismo. Lo que quieren es algo así como un pequeño misil teledirigido que al estallar fulmine sólo las células cancerosas y deje intactas las sanas. De momento, disponen de un plazo de cuatro años y un presupuesto de once millones de euros para intentar conseguirlo.


El Correo 2008

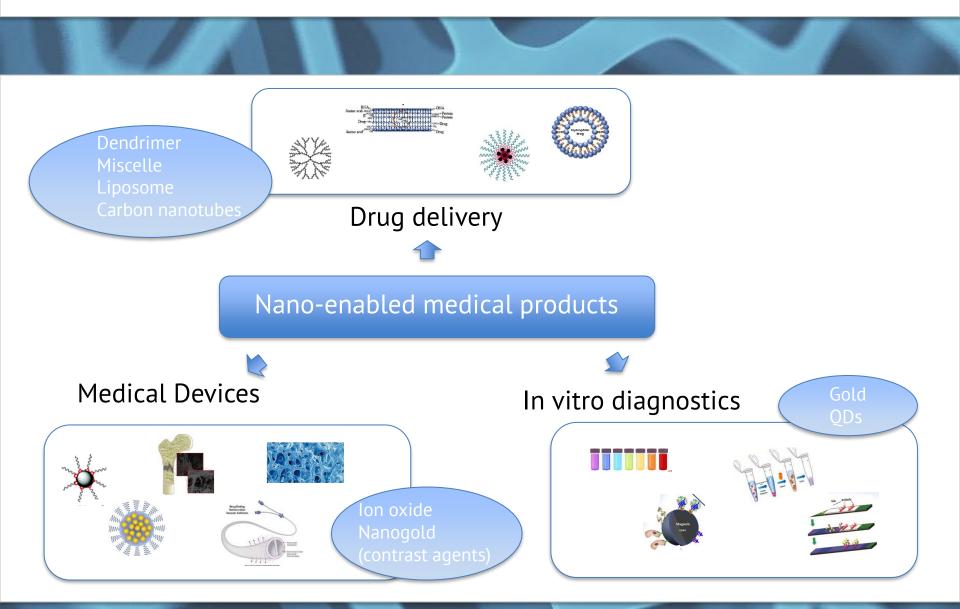
Nano2Clinic 03.03.2023

nanotechia.org

Nanotechnology in contemporary science and industry

Nanoenabled health products (no definition)

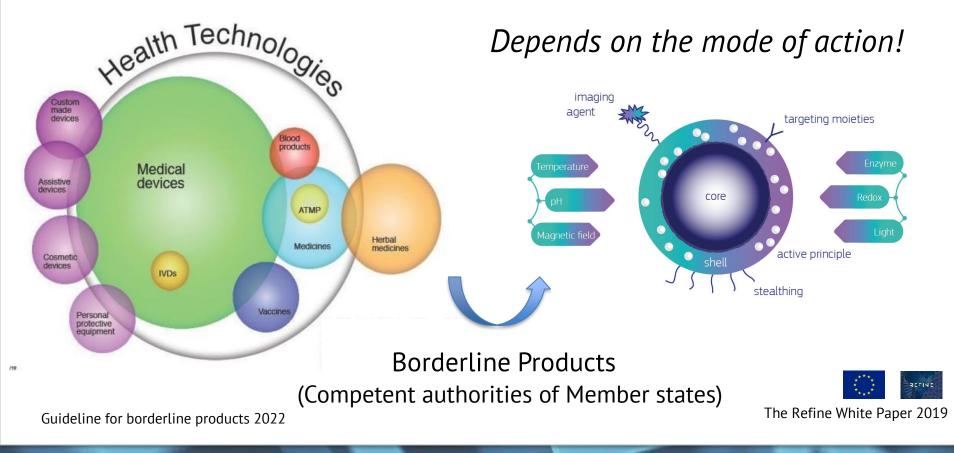
- May contain a fraction of engineered nanomaterials
- May completely consist of engineered nanomaterials
- May produced engineered nanomaterials over time
- May contain surface structures in the nanoscale


Adapted from Takuya Tsuzuki, "Commercial scale production of inorganic nanoparticles," International Journal of Nanotechnology, 6 (2009) 567.

Nano2Clinic 03.03.2023

nanotechia.org

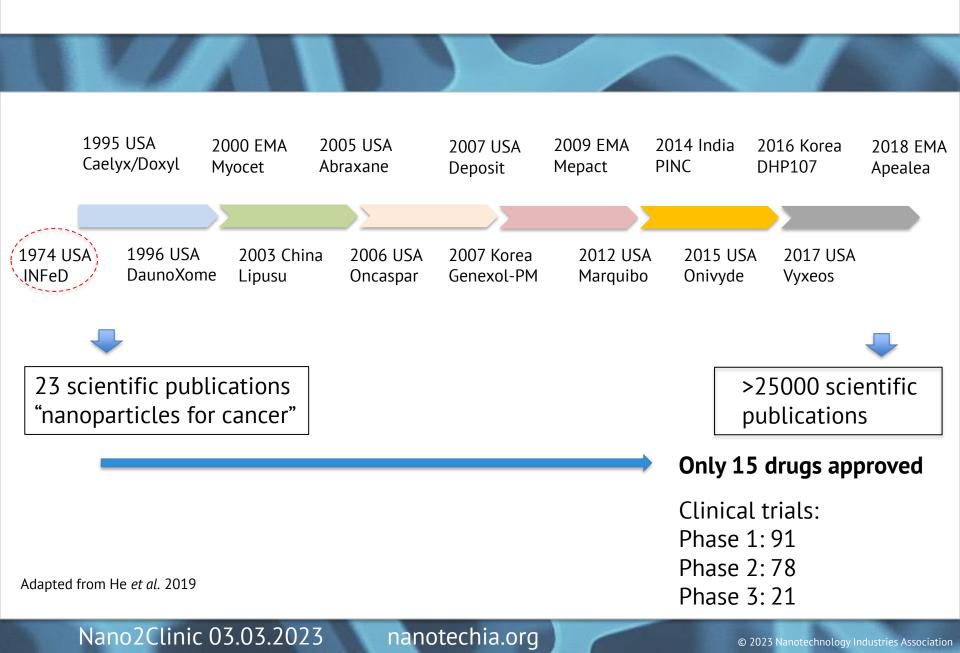
Types of nano-enabled health products


Nano2Clinic 03.03.2023

nanotechia.org

Regulatory Barriers

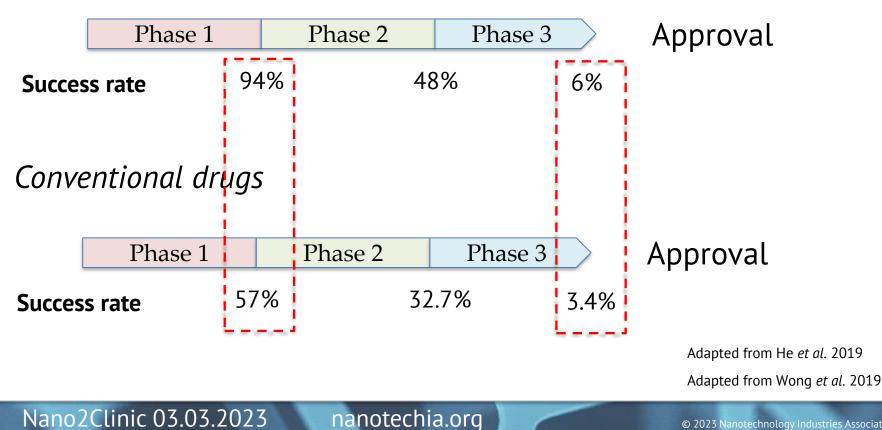
Which regulation are we addressing?



Nano2Clinic 03.03.2023

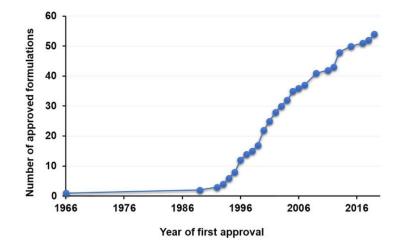
nanotechia.org

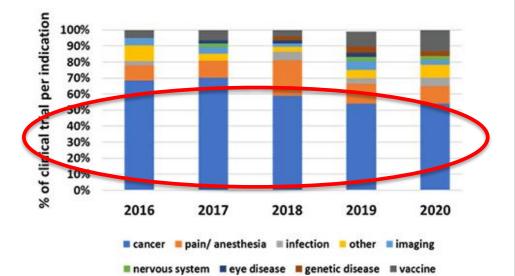
Translation from bench to bed (cancer nanomedicines)



Success rate nanomedicine vs conventional medicines

Cancer drugs

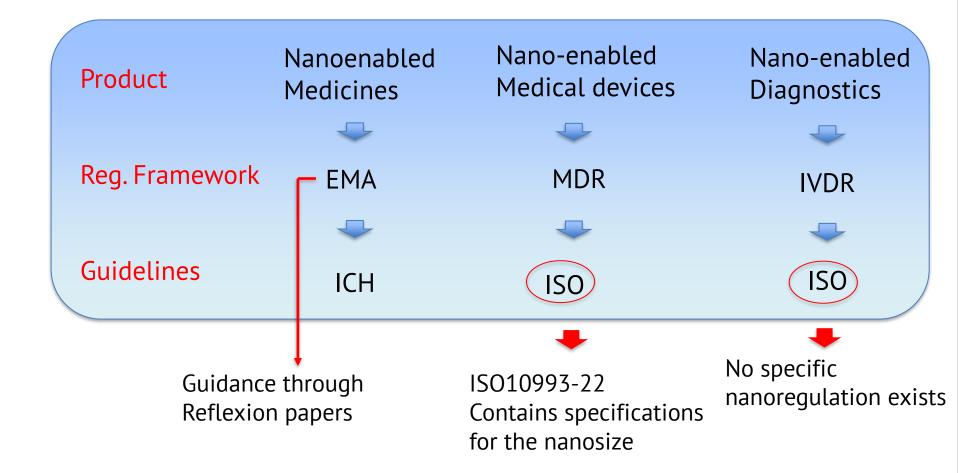

Nanomedicines



Evolution of approved nanomedicine formulations

Overall: 50 nanoformulations (2018)

Liposomes Iron colloids Protein-based NP Nanoemulsions Nanocrystal Metal oxide NP

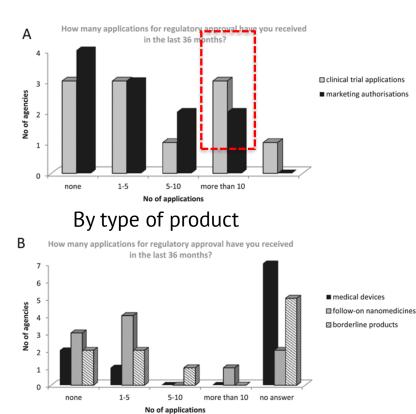


Germain et al. 2020

Nano2Clinic 03.03.2023

Regulatory Landscape

Nano2Clinic 03.03.2023

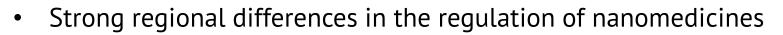

nanotechia.org

Regulatory experience

From the International Pharmaceutical Regulators Forum (chaired by EMA)

Products challenging the regulatory framework

Health Canada, Canada
European Medicines Agency, Europe
Swissmedic, Switzerland
Food and Drug Administration, US
National Institute for Public Health and the Environment, The Netherlands
Centre for Drug Evaluations, Taiwan
Medicines and Biological Products Office, Brazil
Pharmaceuticals and Medical Devices Agency, Japan
Ministry for Food and Drug Administration, Korea


Bremer-Hoffmann et al. 2018

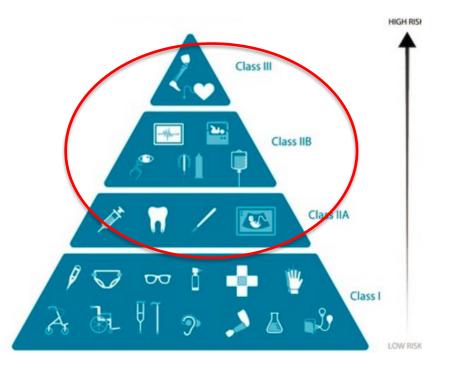
Nano2Clinic 03.03.2023

nanotechia.org

Regulators views

- Need for the harmonisation of information requirements on nanospecific properties (across different sectors)
- A number of critical physicochemical properties that have already been proposed in the scientific literature are also supported by regulators to allow regulatory decision making
- Interest of regulatory agencies in an independent nanomedicine characterisation facility that can support them in the evaluation of these systems and at the same time assess the performance of existing and new test methods for their application to the field of nanomedicine.

Bremer-Hoffmann et al. 2018



Regulatory Barriers

Consensus Standards Lacking:

- -Nanotechnology terminology
- -Physicochemical characterisation to quantify nano-bio effects
- -Guidelines to evaluate safety of pre-clinical products
- -Reference materials
- -Issue with nanosimilars
- ✓ There is no nano definition provided by EMA though in most cases nano refers to <1000 nm</p>
- ✓ MDR and IVDR follow the Commission's recommendation for a definition of nanomaterial (<100 nm)

All devices incorporating or consisting of nanomaterials are classified as:

 class III if they present a high or medium potential for internal exposure;

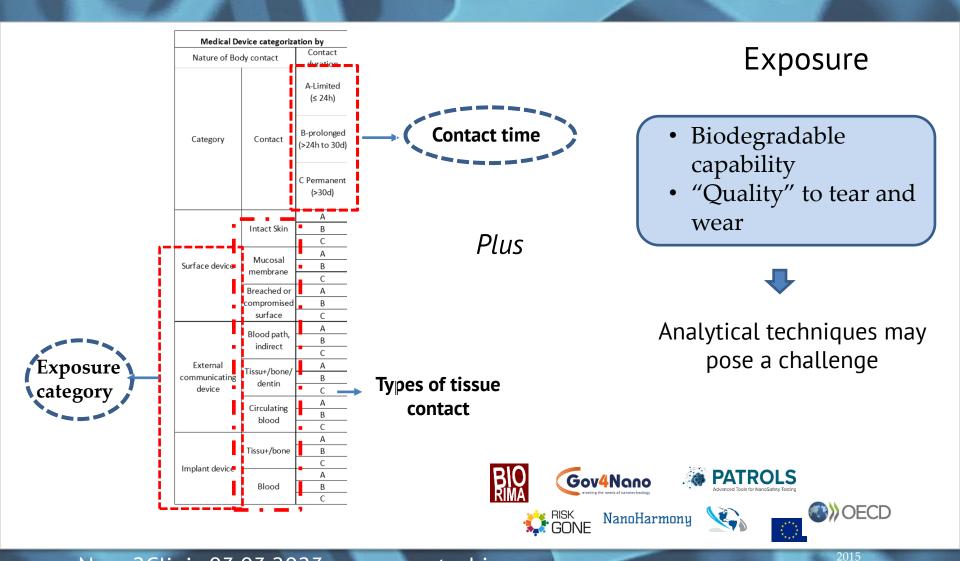
 class IIb if they present a low potential for internal exposure; and

class IIa if they present a negligible potential for internal exposure.

Nano2Clinic 03.03.2023

Parameters for <u>characterisation</u> and identification of nanomaterials (NM) intended for use in medical devices

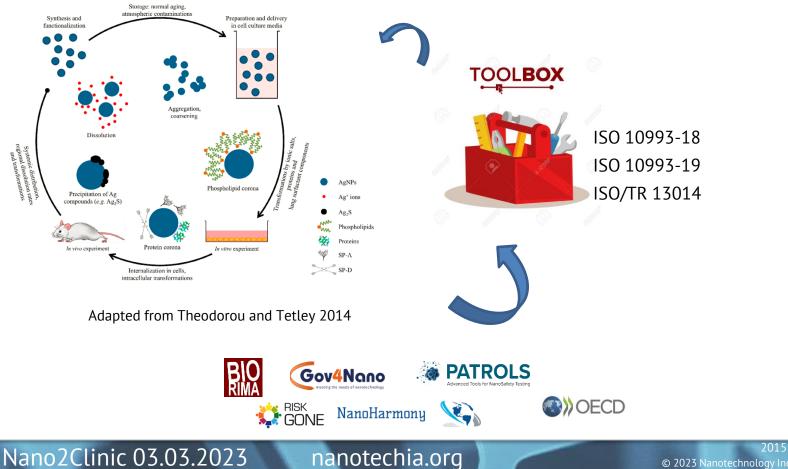
Parameter	Description	Methods*	
Chemical composition/ identity	Information on the chemical composition of the NM – including purity, nature of any impurities, coatings or surface moieties, encapsulating materials, processing chemicals, dispersing agents and/or other formulants e.g. stabilizers; information on structure(s) of the constituents of nanomaterial must be provided	MS, AAS, ICP-MS, FTIR, NMR UVVis, HPLC, GC/LC-MS, XRD Raman spectroscopy	
Particle size (Primary/Secondary)	Information on primary particle size, size range and number size distribution (indicating batch to batch variation – if any). The same information would be needed for secondary particles (e.g. agglomerates and aggregates) if present. At least two methods, one being electron microscopy, should be used	FFF, HDC, HPLC, AUC, CLS disc centrifugation, TEM, SEM, STEM, HRTEM, STM, AFM, DLS, DMA, NTA	
Physical form and morphology	Information on the physical form and crystalline phase/shape. The information should indicate whether the NM is present in a particle-, spherical-, flake-, tube-, rod-, or fibre- shape, the aspect ratio, crystal or amorphous form, and whether it is in free particulate form or in an agglomerated/aggregated state as well as whether the preparation is in the form of a powder, solution, suspension or dispersion.	AFM, TEM, HRTEM, SEM, STEM, STM, NMR, XRD	
Particle and mass concentration	Information on concentration in terms of particle number and particle mass per volume when in dispersion and per mass when as dry powder.	A wide range of analytical methods, including UV-Vis, HPLC, GC/LC-MS, AAS, ICP-MS	


	I.	02.10
Surface charge	Information on zeta potential of the NM.	PALS (for zeta potential)
Redox potential	Information on redox potential, especially for inorganic NMs. Conditions under which redox potential was measured also need to be documented.	Potentiometric methods, X-ray absorption spectroscopy
Solubility and partition properties ^a	Information on solubility of the NM in relevant solvents and their partitioning between aqueous and organic phase (e.g. as log K _{ow} if appropriate).	Solubility/ dissolution rate in water and other solvents
pH	pH of aqueous suspension.	pH in aqueous media
Viscosity	Information on viscosity of liquid dispersions.	OECD 114
Density and pore density	For granular materials, information on density/porosity of unformulated NM and pore density.	DIN ISO 697, EN/ISO 60
Dustiness	Information on dustiness of dry powder products – such as cements and alginates	EN 15051:2006, DIN 33897-2.
Chemical reactivity/ catalytic activity ^b	Information on relevant chemical reactivity or catalytic activity of the NM and of any surface coating of the NM.	Kinetic measurements of chemical, biochemical and/or catalysed reactions
Photocatalytic activity	Information on photocatalytic activity of relevant materials used (e.g. coatings, dental materials)	TEM, UV, X-ray topography
Particle and mass concentration	Information on concentration in terms of particle number and particle mass per volume when in dispersion and per mass when as dry powder.	A wide range of analytical methods, including UV-Vis, HPLC, GC/LC-MS, AAS, ICP-MS
Specific surface area	Information on specific surface area of the NM. At the moment this is only applicable for dry powders	BET
Surface chemistry	Information on NM surface – including any chemical/ biochemical modifications that could modify the surface reactivity,	LDE, SPM, XPS, MS, RS, FTIR, NMR, AUC (for

CROs? GLP

Nano2Clinic 03.03.2023

Nano2Clinic 03.03.2023


Nanotechnology Industries Association

nanotechia.org

Testing Guidelines Gaps – Medical Devices

Characterisation of nanomaterials used in medical devices

Testing Guidelines Gaps – Medical Devices

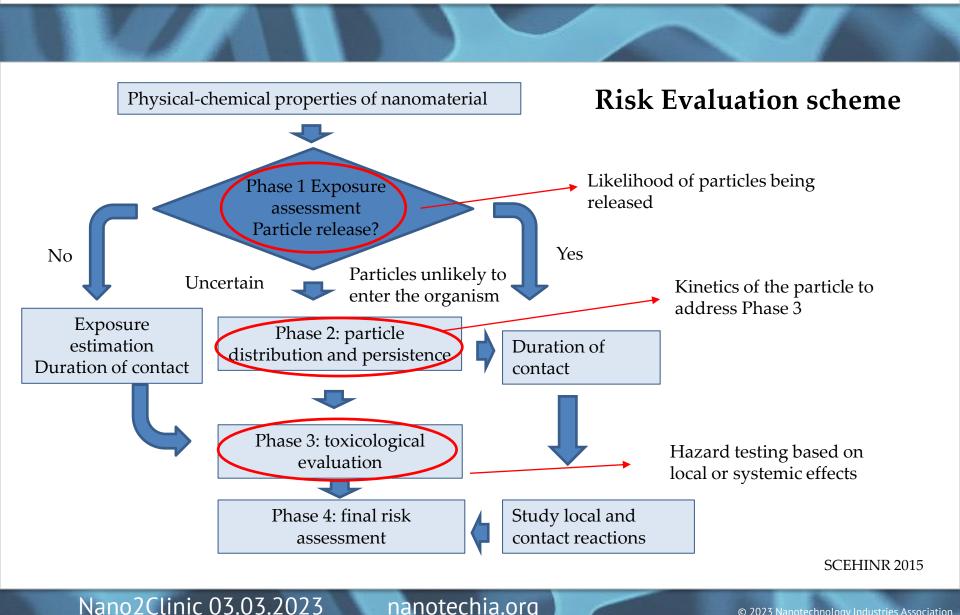
Testing	Non-invasive	Non-invasive	Invasive	Invasive
proposed	short term	long term	short term	long term
	use	use	use	use
	Phys: chem	Phys: chem	Phys: chem	Phys: chem
	data	data	data	data
	Cytotoxicity in	Cytotoxicity in	Cytotoxicity in	Cytotoxicity in
	vitro	vitro	vitro	vitro
	Irritancy in	Irritancy in	Irritancy in	Irritancy in
Low	vitro	vitro	vitro	vitro
exposure	Hypersensitivity	Hypersensitivity	Hypersensitivity	Hypersensitivity
		Genotoxicity in		Genotoxicity in
		vitro		vitro
				General
				Immuno
				toxicity testing
		Constructivity in	Other in vitro	28/90 day in
		Genotoxicity in vivo	plus in silico	vivo toxicity
		VIVO	testing*	test
				In vitro and in
Medium exposure Additional tests		Immuno	Genotoxicity in	vivo (repeated
		toxicity at	vitro and in	dose)
		location site	vivo	genotoxicity
				testing
		Persistence		ADME including
		/accumulation		persistence
		studies at		/accumulation
		location site		studies
		only		studies
High exposure	Selected in vivo	Selected in vivo		In vivo chronic
	acute toxicity	chronic toxicity		toxicity tests
	tests focussed	tests focussed	In vivo acute	may include
Additional tests	on location	on location	toxicity tests	reprotox
	site(s)	site(s)		depending on
	site(s)	site(s)		patient group.

GONE

Nanotechnology Industries Association

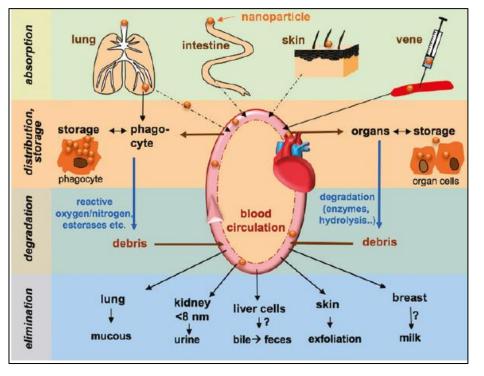
ISO19007:2018-MTS ISO10993-3 Genotoxicity ISO10993-4 Haemotoxicity ISO10993-12 Acute toxicity

Are we doing the right translation?



Nano2Clinic 03.03.2023

NanoHarmony


nanotechia.org

anotechnology industries Association

Toxicokinetics of nanomaterials in Medical Devices

Adapted from Gubala et al. IUPAC 2017

ADME: absorption, distribution, metabolism and excretion

Uptake: ocular, inhalation, oral, dermal, transdermal

Blood clearance happens fast so focus on target organs:

Liver, Spleen, Bone Marrow, Kidney

Tissue accumulation/persistence of a nanomaterial should be investigated. In case of no absorption, no systemic toxicity testing required.

OECD guidelines adapted to nanomaterials ISO 10993-22

Nano2Clinic 03.03.2023

Main Questions:

- Physical description: What does it look like?
- Chemical composition: What is it made of?
- Extrinsic properties: How does it interact with the surrounding environment?

ISO10993-22 Guidance on nanomaterials

<u>Cytotoxicity</u>: Uptake, Cell type, ox. tress, dose metrics, aggregation, electric charge/optical properties

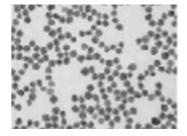
<u>Genotoxicity, carcinogenicity, reprotoxicity</u>: *in vitro* -demonstrate exposure to the cell nucleus (DNA damage), in vivo –ensure NM reaches target organ

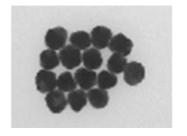
<u>Immutoxicity, skin irriation, sensitisation</u>: NMs enter MPS cells which play a central role in immune system, nano-protein complex can result in sensitization, skin penetration dependent on size and shape

<u>Haemocompatibility</u>: translocation to systemic circulation, can induce prothrombotic effects and platelet activation, surface area, complement system activation – inflammatory and hypersensitivity reactions

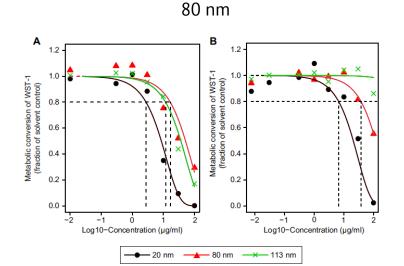
<u>Systemic toxicity</u>: cannot be predicted by bulk material toxicity, potentially crossing all protective barriers including the nuclear membrane, blood-brain and foeto-placental barriers, special emphasis on the MPS (liver, spleen), kidneys, brain, bone marrow

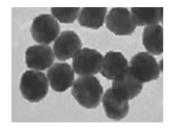
<u>Pyrogenicity</u>: various implantation sites, direct injection into appropriate tissue, controls


Nano2Clinic 03.03.2023



Testing Guidelines Gaps – Medical Devices


MDR. Risk Assessment should be performed on a case by case basis


Transmission electron micrographs of Ag particles

20 nm

Metabolic conversion of WST-1 in L929 fibroblasts (A) and RAW 264.7 macrophages (B) as a function of concentration of silver nanoparticles. Dashed lines represent EC20 values.

Park et. 2011

Nano2Clinic 03.03.2023

nanotechia.org

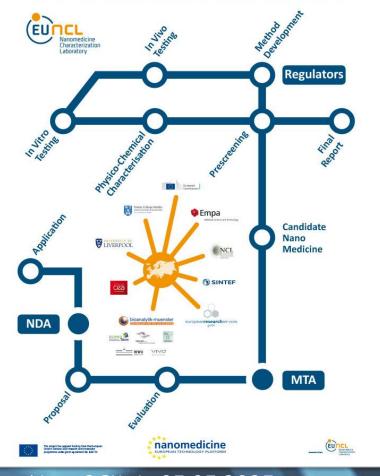
European Medicines Agency

Develop understanding of, and regulatory response to, nanotechnology and new materials in pharmaceuticals Raise awareness of new nanomedicines via the EU-Innovation Network, and foster collaboration with JRC and other international partners

Share knowledge and harmonize regulatory practices: Generate guidance addressing PK/PD (including modelling) requirements and longterm efficacy and safety;

Develop and standardise new testing methods related to quality/safety assessment of nanomedicines

Understand the critical quality attributes (CQA) of a given product and the relationship between those and the biological activity and in-vivo behaviour of the product;


EMA Regulatory Science to 2025 – Strategic reflection

Nano2Clinic 03.03.2023

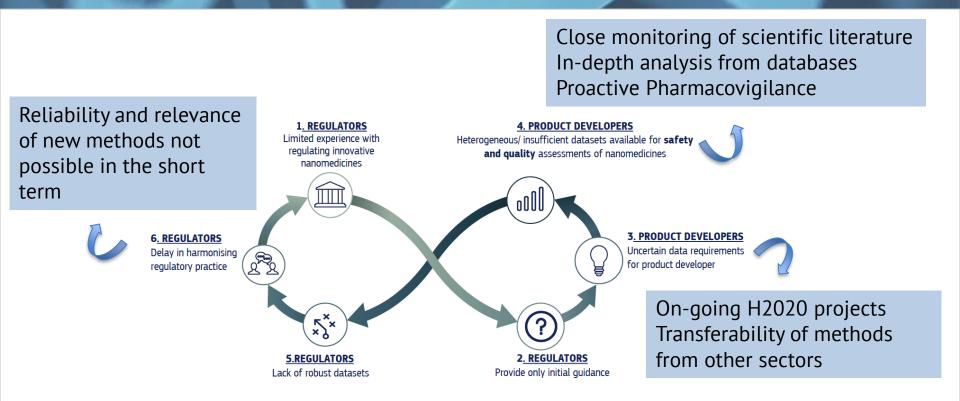
Nanomedicine Characterisation Laboratory

Nanomedicine Characterisation Laboratory

Fosters the use and deployment of:

- Standard operating procedures (SOPs),
- Benchmark materials,
- Quality management for the preclinical characterisation of Med-NPs

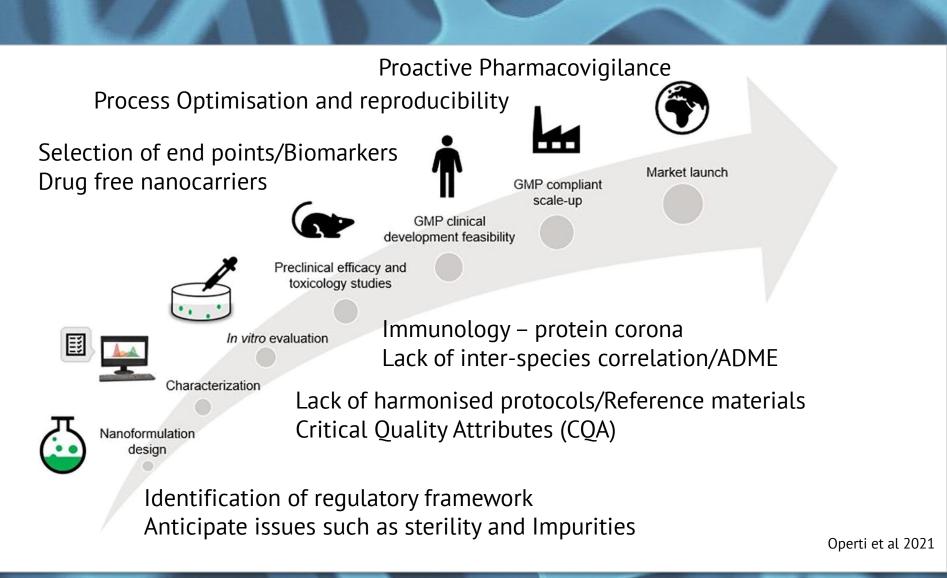
It is a key objective for EUNCL to constantly refine and adapt its assay portfolio and processes in order maintain the provision of state-of-the-art


From 2020

Nano2Clinic 03.03.2023 nanoted

nanotechia.org

Regulatory Barriers

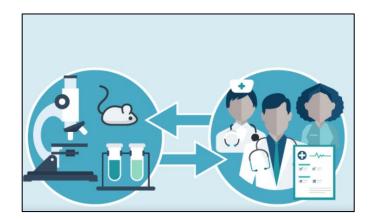


The Refine White Paper 2019

Nano2Clinic 03.03.2023

Conclusions

Nano2Clinic 03.03.2023


nanotechia.org

"To bridge the gap of nanomedicine lab research to industrial manufacturing, collaboration and integration among academics, scientists, industries, and regulatory agencies is required to develop comprehensive approaches to ensure safe, effective, and translatable nanomedicine products."

Adapted from Agrahari and Hiremath 2017 DowWire News Feature reading

Nano2Clinic 03.03.2023

nanotechia.org

THANK YOU!

blanca.suarez@nanotechia.org Director of Regulatory Affairs

Nano2Clinic 03.03.2023

nanotechia.org