

Potential applications and design of protein delivery systems Francesco Cellesi

Department of Chemistry, Materials and Chemical engineering "G. Natta", Politecnico di Milano, Italy

Nanosized systems for protein delivery

Liposomal nanocarriers

Dr. Lynda K Harris, Pharmacy, Uni Manchester (UK)

Thermosensitive liposomes

Liposome	Lipid composition (mol/mol)	Thermo-sensitivity	T _m (°C)	$d_{h}\left(nm\right) ^{a}$	PDI ^a	ζ -potential (mV) ^a
NTSL TSL1 TSL2 TTSL LTSL	DSPC/Chol/DSPE-PEG(2000) = 65/30/5 DPPC/DSPE-PEG(2000) = 95/5 DPPC/DSPC/DSPE-PEG2000 = 80/15/5 DPPC/DSPC/Chol/DSPE-PEG(2000) = 50/25/15/3 DPPC/Lyso-PC/DSPE-PEG2000 = 90/10/4	No YES YES YES YES	n/a [*] 42.5 43.0 40.9 40.9	$\begin{array}{c} 155\pm 2 \\ 152\pm 1 \\ 134\pm 1 \\ 147\pm 2 \\ 148\pm 1 \end{array}$	$\begin{array}{c} 0.05 \pm 0.02 \\ 0.08 \pm 0.01 \\ 0.05 \pm 0.02 \\ 0.03 \pm 0.01 \\ 0.08 \pm 0.02 \end{array}$	$\begin{array}{c} -2.1\pm 0.4\\ -2.2\pm 0.6\\ -5.4\pm 0.2\\ -1.8\pm 0.2\\ -2.0\pm 0.2\end{array}$

A) Temperature dependent release of CF from liposomes (lipid concentration 5 mM) in PBS (10 mM, pH= 7.4). The samples were incubated at the desired temperature (37-45 $^{\circ}$ C) for 5 min. The CF release was measured for each formulation. B) Time dependent CF release from LTSL at different temperature (37-42 $^{\circ}$ C). Results are given as mean of three measurements, ±SD.

BDNF - Thermosensitive liposomes

(a) Temperature-dependent percent release of BDNF from LTSL in 30 min (n = 3, p < 0.05 and p < 0.01). (b) Time-dependent percent release of BDNF in 30 min at 37 C and 42 C. After 30 min incubation at set temperature, further incubation at 37 C for additional 2 h and 48 h was carried out.

Morphology of podocytes stained by green phalloidin (scale bar 20 mm); (a) cells treated with ADR for 24 h; (b) cells damaged by ADR and incubated for 48 h with blank LTSL (c) cells damaged by ADR and incubated for 48 h with BDNF-loaded LTSL (BDNF concentration 200 ng/mL).

Macromolecules loading in liposomes

Liposome	Z-average size (nm) ^a	PDI ^a	ζ-potential (mV) ^a	LE (%) ^a	EE (%) ^a
TSL1	153 ± 1	$\textbf{0.08} \pm \textbf{0.01}$	-2.1 ± 0.4	0.023 ± 0.004	15.0 ± 2.7
TSL2	154±3	$\textbf{0.13}\pm\textbf{0.04}$	-6.5 ± 0.1	$\textbf{0.038} \pm \textbf{0.008}$	25.0 ± 5.3
TTSL	150 ± 1	0.14 ± 0.03	-0.6 ± 0.1	0.013 ± 0.001	9.0 ± 0.7
LTSL	145 ± 1	0.12 ± 0.03	-6.8 ± 0.4	0.062 ± 0.007	41.3 ± 4.7

Table 4

Table 3

Characterization of TRITC-dextran and Rho-A4PEG5 encapsulated liposomes (0.5 mM lipid suspension in PBS buffer 10 mM, pH = 7.4, 25 °C).^a Mean ± SEM, N = 3.

Characterization of FITC-albumin encapsulated liposomes (0.5 mM lipid suspension in PBS 10 mM, pH = 7.4, 25 °C).^a Mean ± SEM, N = 3.

Liposome	Payload	Z-average (nm) ^a	PDI ^a	ζ-potential (mV) ^a	LE (mol%) ^a	EE (%) ^a
TSL2	TRITC-dextran Rho-A4PEG5	$\begin{array}{c} 128\pm 6\\ 132\pm 2\end{array}$	$\begin{array}{c} 0.09 \pm 0.02 \\ 0.08 \pm 0.01 \end{array}$	$\begin{array}{c} -1.3 \pm 0.3 \\ -1.5 \pm 0.2 \end{array}$	$\begin{array}{c} 0.012 \pm 0.001 \\ 0.052 \pm 0.004 \end{array}$	$\begin{array}{c} 5.1 \pm 0.6 \\ 5.6 \pm 0.4 \end{array}$
TTSL	TRITC-dextran Rho-A4PEG5	$\begin{array}{c} 156\pm3\\ 150\pm2 \end{array}$	$\begin{array}{c} 0.03 \pm 0.01 \\ 0.06 \pm 0.01 \end{array}$	$\begin{array}{c} -1.0 \pm 0.3 \\ -0.9 \pm 0.3 \end{array}$	$\begin{array}{c} 0.009 \pm 0.001 \\ 0.049 \pm 0.005 \end{array}$	$\begin{array}{c} 3.7 \pm 0.7 \\ 5.3 \pm 0.5 \end{array}$
LTSL	TRITC-dextran Rho-A4PEG5	$\begin{array}{c} 134 \pm 2 \\ 133 \pm 3 \end{array}$	$\begin{array}{c} 0.08 \pm 0.01 \\ 0.09 \pm 0.01 \end{array}$	$\begin{array}{c} -1.0 \pm 0.1 \\ -1.5 \pm 0.2 \end{array}$	$\begin{array}{c} 0.015 \pm 0.001 \\ 0.063 \pm 0.005 \end{array}$	$\begin{array}{c} 6.0\pm0.7\\ 6.8\pm0.5\end{array}$

Table 5

Characteristics of FITC-lysozyme (LZ) and BDNF loaded liposomes with different formulations. ^a Mean \pm SEM, N = 3. Liposomal vesicles were diluted to 0.5 mM with PBS buffer (10 mM, pH = 7.4) and the particle size, size distribution and ζ -potential were measured by DLS techniques at 25 °C.

Protein	Lipid formulation	Initial protein/lipids ratio (mol/mol)	Average size (nm) ^a	PDI ^a	ζ-potential (mV) ^a	LE (mol%) ^a	EE (%) ^a
LZ LZ LZ LZ LZ BDNF	TSL1 TSL2 LTSL LTSL LTSL LTSL	$\begin{array}{c} 7.1\times10^{-4}\\ 7.1\times10^{-4}\\ 7.1\times10^{-4}\\ 1.4\times10^{-3}\\ 7.1\times10^{-3}\\ 3.7\times10^{-4} \end{array}$	$134 \pm 1 136 \pm 3 133 \pm 1 138 \pm 2 134 \pm 2 142 \pm 5$	$\begin{array}{c} 0.10 \pm 0.02 \\ 0.09 \pm 0.03 \\ 0.09 \pm 0.01 \\ 0.06 \pm 0.02 \\ 0.10 \pm 0.01 \\ 0.10 \pm 0.03 \end{array}$	$\begin{array}{c} -2.02\pm 0.20\\ -2.25\pm 0.29\\ -1.96\pm 0.35\\ -1.44\pm 0.19\\ -1.40\pm 0.30\\ -1.78\pm 0.01\end{array}$	$\begin{array}{c} 0.011\pm\ 0.006\\ 0.011\pm\ 0.003\\ 0.010\pm\ 0.001\\ 0.030\pm\ 0.001\\ 0.069\pm\ 0.005\\ 0.004\pm\ 0.001 \end{array}$	$\begin{array}{c} 15.4 \pm 0.8 \\ 15.1 \pm 0.4 \\ 14.4 \pm 0.2 \\ 21.2 \pm 0.6 \\ 9.6 \pm 0.7 \\ 11.9 \pm 0.1 \end{array}$

SiO₂ gel nanoparticles

- Non toxic with acceptable in vivo biocompatibility.
- No swelling and no change in porosity in a physiologically acceptable range of temperature and pH.
- Preparation conditions based on **mild sol-gel synthesis** that can retain the activity of entrapped enzymes

Enzyme encapsulation in SiO₂ NPs

Synthesis performed in W/O microemulsion

time (min)

Synthesis performed in buffer (SiO₂ nucleation in

presence of a positively charged enzyme)

F.Cellesi, N.Tirelli, Colloids and Surfaces A (288), 2006, 52-61

P. De leonardis et Al., Colloids and Surfaces A (580) 2019, 123734

Surface polymerisation

Protein - polymer conjugates

Grafting-from approach via ARGET ATRP

Protein-polymer hybrids, controlled MW and architecture

Immunoactive PGMA

. .

Mannose-PGMA Uptake

Fluorinated hyperbranched polyglycerols

W. Celentano et Al., Polymer Chemistry 2020

Contractor

Polymer Chemistry

¹⁹F-HPG for MRI and DEX delivery

Complex copolymers for proteinase rich tumors

Acknowledgment

% fesr

FONDAZIONE IRCCS CA' GRANDA OSPEDALE MAGGIORE POLICLINICO SUPPORTED BY

ROP ERDF 2014-2020 / INNOVATION AND COMPETITIVENESS

