

IOR An institute affiliated to USI

Nanoparticles uptake and distribution

Jessica Merulla, IOR, Bellinzona, CH

COST ACTION CA 17140 - NANO2CLINIC Working group 3 workshop Preclinical Development of Cancer Nanomedicines: State of the Art and Future Perspectives March 24-25th 2022, Institute of Oncology Research-IOR, Bellinzona, CH

nature nanotechnology

ARTICLES https://doi.org/10.1038/s41565-019-0485-z

Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy

Quan Zhou^{1,6}, Shiqun Shao^{1,6}, Jinqiang Wang^{2,3}, Changhuo Xu¹, Jiajia Xiang¹, Ying Piao¹, Zhuxian Zhou¹, Qingsong Yu⁴, Jianbin Tang¹, Xiangrui Liu¹, Zhihua Gan⁴, Ran Mo⁵, Zhen Gu^{2,3*} and Youqing Shen¹

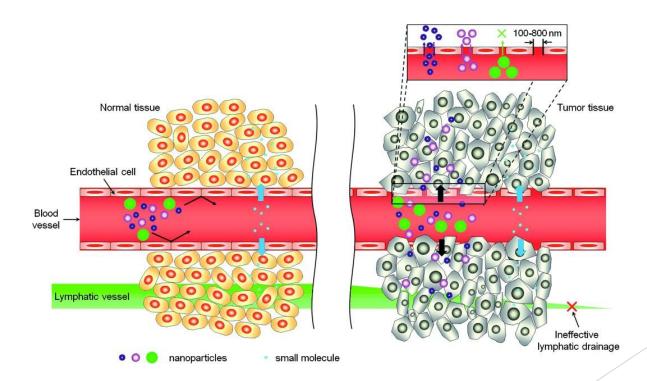
nature nanotechnology **ARTICLES** https://doi.org/10.1038/s41565-018-0356-z

Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness

Fei Peng^{1,2,5}, Magdiel Inggrid Setyawati ^{[0],5}, Jie Kai Tee ^{[0],2,3,5}, Xianguang Ding¹, Jinping Wang¹, Min En Nga⁴, Han Kiat Ho ^{[0],2,3*} and David Tai Leong ^{[0],3*}

24th March 2022

Jessica Merulla


Most cancer nanotherapeutics are delivered intravenously

Defective tumour vessels and impaired lymphatics on the tissue

Most cancer nanotherapeutics are delivered intravenously

Defective tumour vessels and impaired lymphatics on the tissue

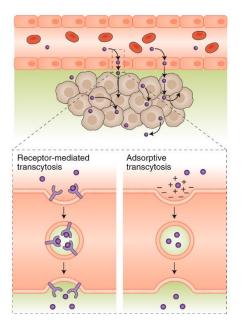
Entry tumour interstitial space and retention

Oversimplified interpretation of EPR effect

- NPs properties (size, geometry, surface features..) influence EPR effect
- The EPR effect changes within and between different tumours

Oversimplified interpretation of EPR effect

- NPs properties (size, geometry, surface features..) influence EPR effect
- The EPR effect changes within and between different tumours


Heterogeneity in vascular leakiness and stromal barriers can became a bottleneck in the efficacy

Transfer NPs through the cells to increase delivery and penetration

Transcellular transfer of nanomedicine

Use paracellular and transcellular transport of endothelial and epithelial cells

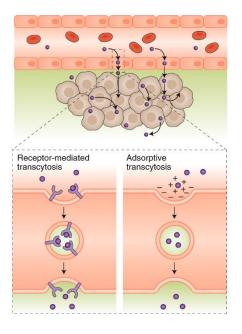
Transcytosis

Non-digestive

Caveolae-mediated

Transfer large molecules

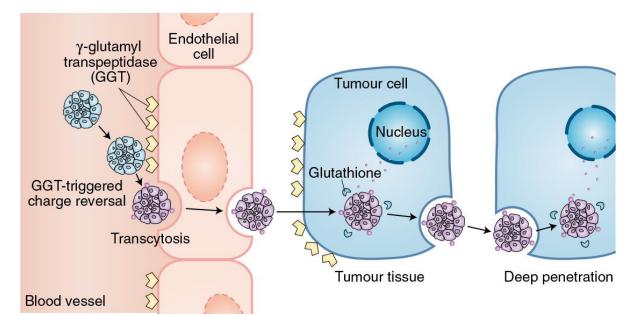
nature nanotechnology


Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy

Quan Zhou^{1,6}, Shiqun Shao^{1,6}, Jinqiang Wang^{2,3}, Changhuo Xu¹, Jiajia Xiang¹, Ying Piao¹, Zhuxian Zhou¹, Qingsong Yu⁴, Jianbin Tang¹, Xiangrui Liu¹, Zhihua Gan⁴, Ran Mo⁵, Zhen Gu^{2,3*} and Youqing Shen¹*

Transcellular transfer of nanomedicine

Use paracellular and transcellular transport of endothelial and epithelial cells

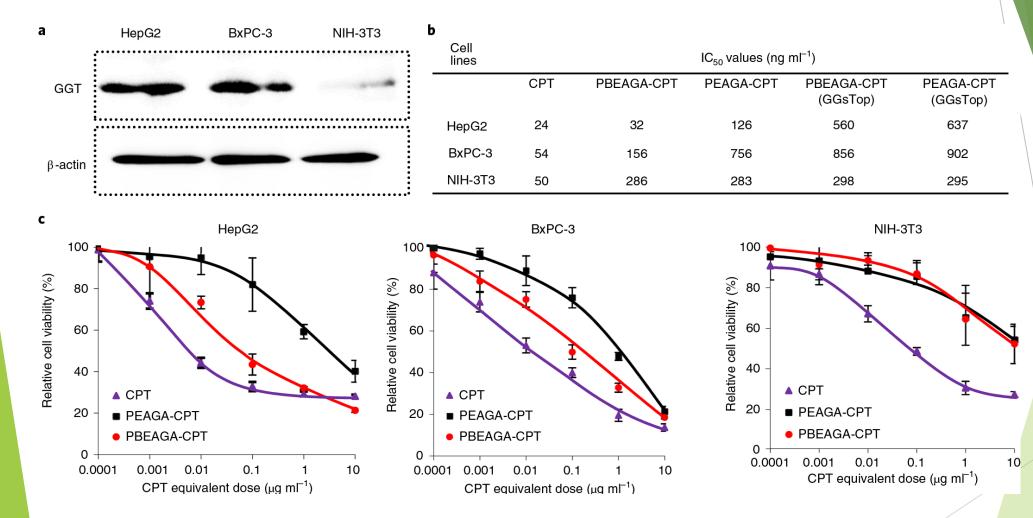

<u>Transcytosis</u>

Non-digestive

Caveolae-mediated

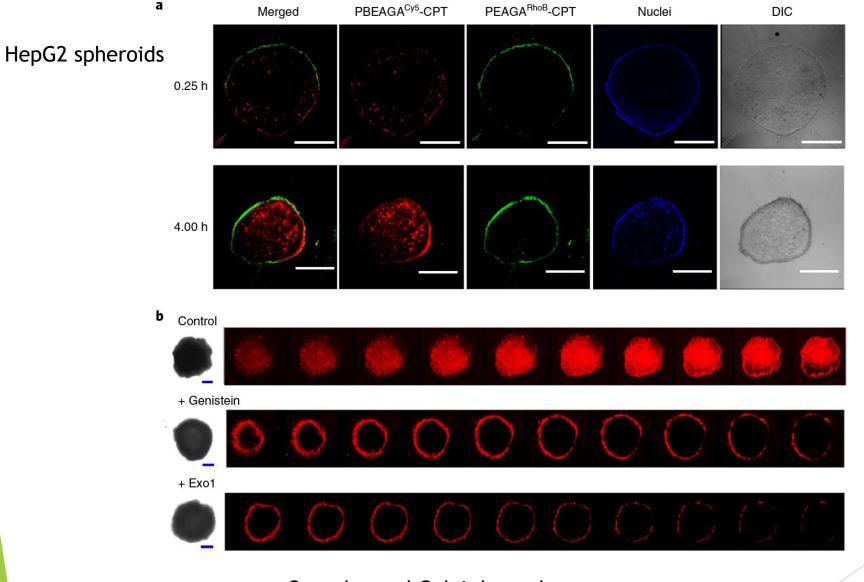
Transfer large molecules

The nanomedicine is polymer PBEAGA-CPT (Camptothecin)

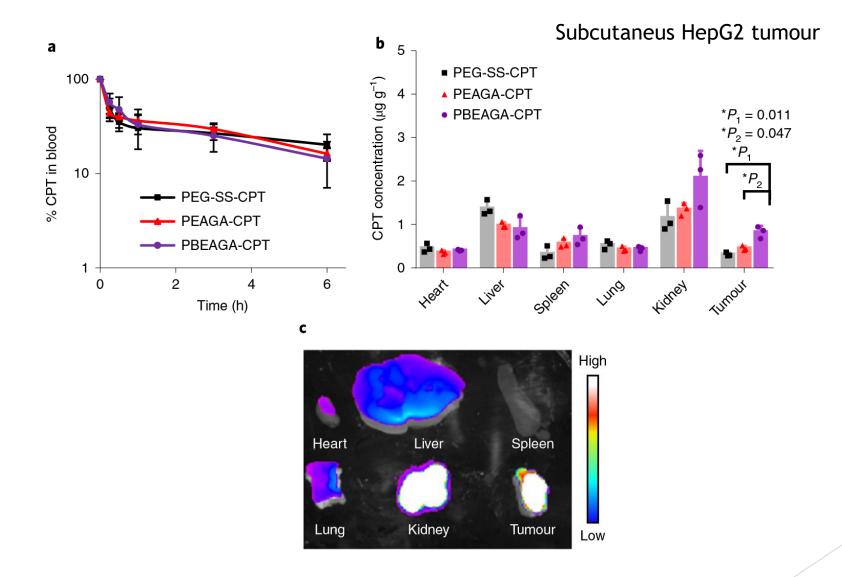

Neutrally charged in blood, positively charged by GGT

Cationization triggers fast endocytosis and transcytosis

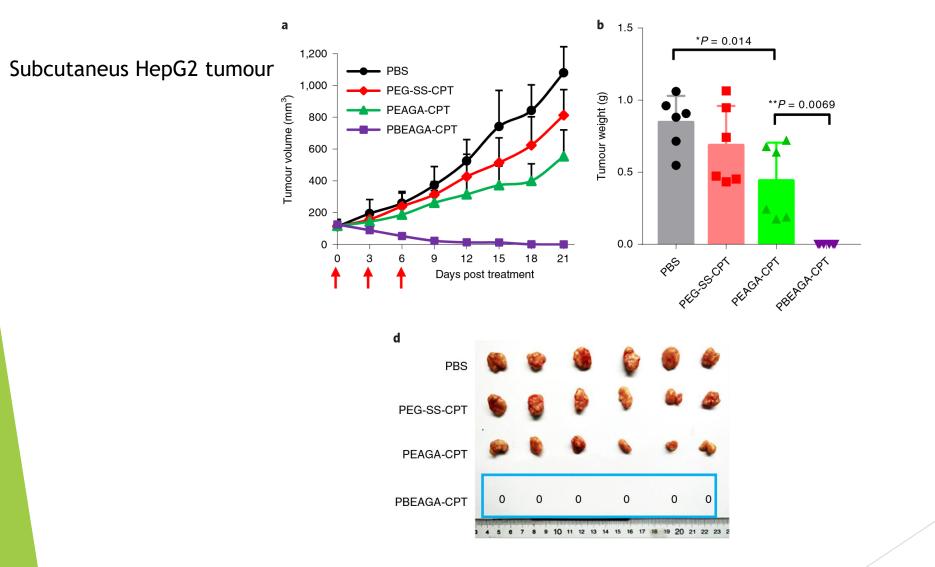
Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy


Quan Zhou^{1,6}, Shiqun Shao^{1,6}, Jinqiang Wang^{2,3}, Changhuo Xu¹, Jiajia Xiang¹, Ying Piao¹, Zhuxian Zhou⁰, Qingsong Yu⁴, Jianbin Tang¹, Xiangrui Liu¹, Zhihua Gan⁴, Ran Mo⁵, Zhen Gu^{2,3*} and Youqing Shen^{1*}

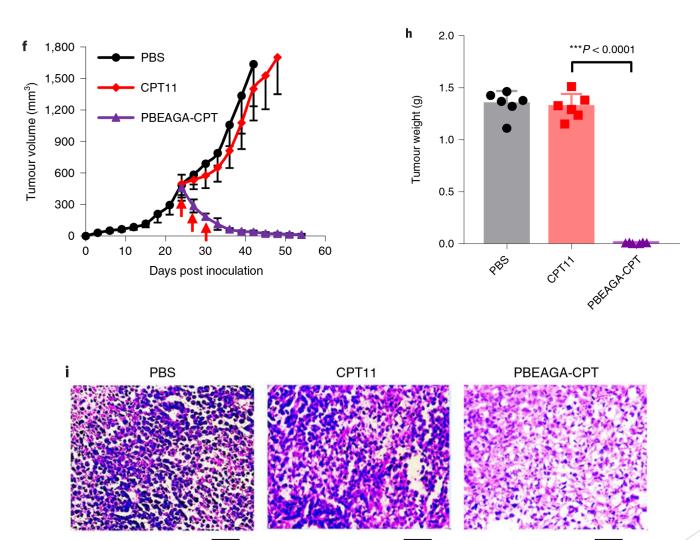
Cell cytotoxic assays


PBEAGA-CPT toxicity depends on GGT activity

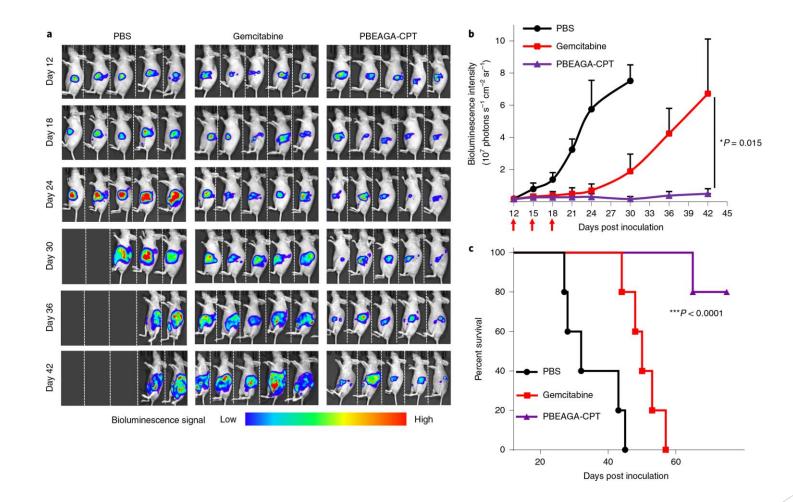
In vitro penetration of polymer-drug conjugates


Caveolar and Golgi dependent transport

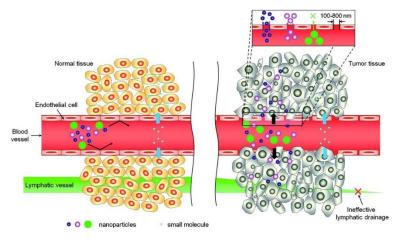
Blood clearance, biodistribution and in vivo penetration


Conjugates are stable in blood and accumulate in tumor

In vivo antitumor efficacy

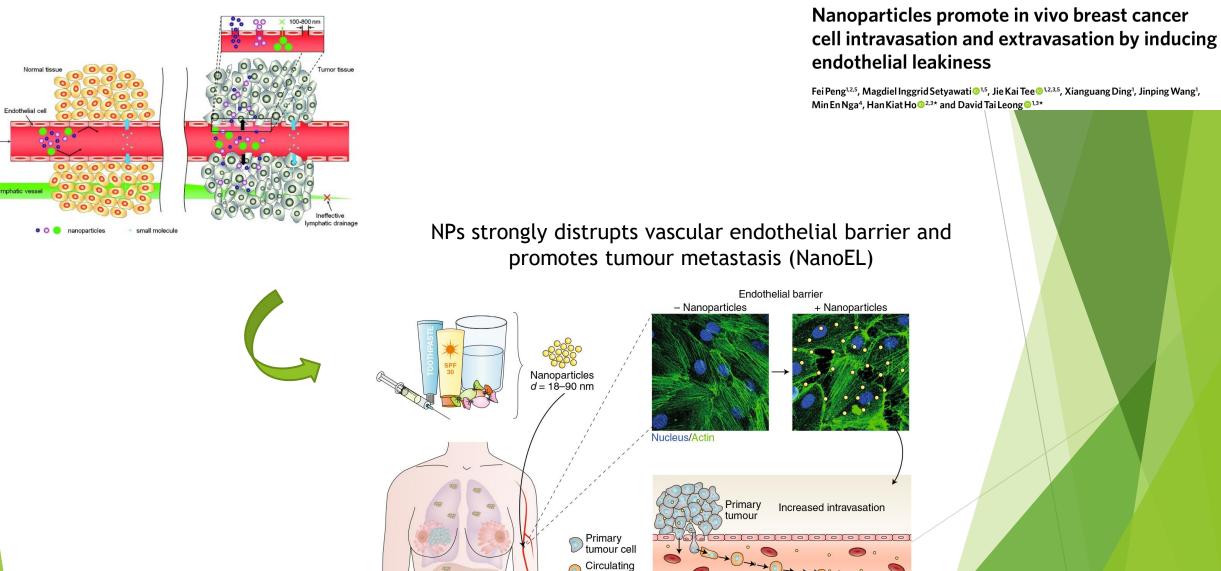

PBEAGA-CPT showed the higher tumour inhibition

In vivo antitumor efficacy


PBEAGA-CPT has high efficacy in large/inoperable tumours

Antitumour activity against orthotopic pancreatic tumour

PBEAGA-CPT is active in orthotopic pancreatic tumour (high GGT activity)


Opening the vascular gate (NanoEL)

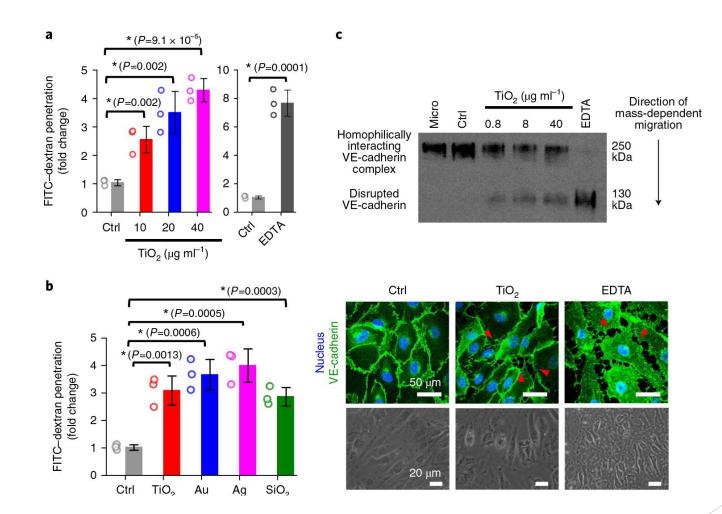
Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness

Fei Peng^{1,2,5}, Magdiel Inggrid Setyawati $^{\circ}$ ^{1,5}, Jie Kai Tee $^{\circ}$ ^{1,2,3,5}, Xianguang Ding¹, Jinping Wang¹, Min En Nga⁴, Han Kiat Ho $^{\circ}$ ^{2,3*} and David Tai Leong $^{\circ}$ ^{1,3*}

Opening the vascular gate (NanoEL)

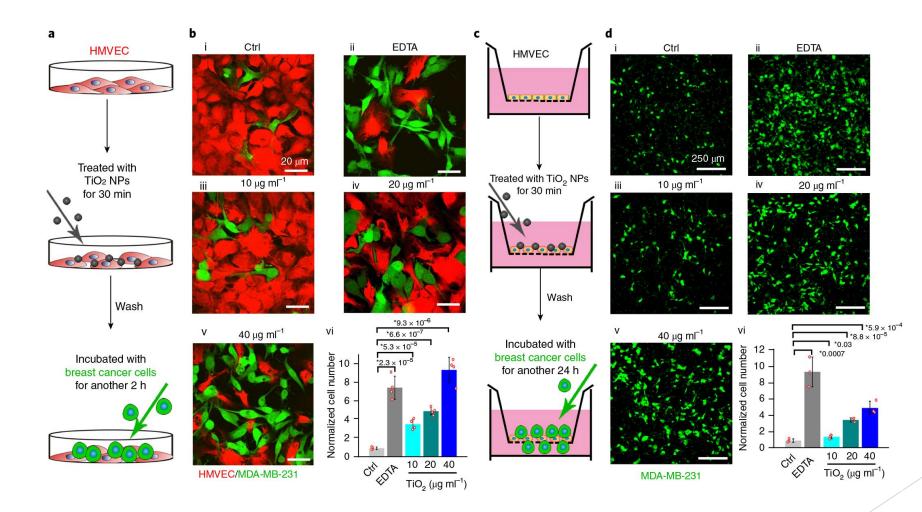
tumour cell Metastatic

🔍 tumour cell


Nanoparticles

Increased extravasation

Metastatic


tumour

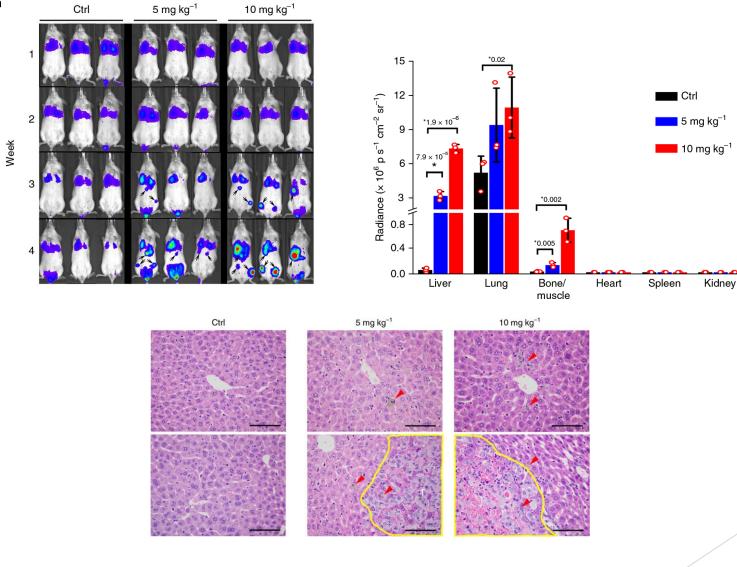
TiO₂ NPs disrupted endothelial cell barrier integrity

Dose dependent damage of endothelial cells barrier depending on VE-cadherin

NanoEL increases endothelial permeability of MDA-MB-231

Breast cancer cells migrate across the endothelial barrier

NanoEL facilite metastasis of cancer cells


а *0.02 E-CADHERIN_{human} *0.0003 EGFR_{human} GAPDH human *0.001 10 6 *0.004 1.0 MDA-MB-231 xenograft 8 4 6 *0.005 0.5 4 2 Relative mRNA quantity versus *Gapdh*_n 2 0 2 2 0 2 0 1 З 0 3 1 3 4 4 Time (week) Time (week) Time (week) E-CADHERIN_{human} β -Actin_{mouse} b 500 *0.0008 2.0 0 00 1.5 *0.004 400 •6.0 × 10 1.5 Cell number 1.0 150 1.0 *1.3 × 10 100 -0.5 0.5 50 0.0 0 2 2 1 3 4 0 1 2 3 4 0 3 4 1 Time (week) Time (week) Time (week) 10 mg kg⁻¹ Ctrl 5 mg kg^{-1} d С 10 mg kg⁻¹ 5 mg kg⁻¹ Ctrl Ctrl 5 mg kg⁻¹ 10 mg kg⁻ Heart Liver Week Spleen Lung Kidney Brain

Increased intravasation of tumor cells in the blood circulation

Higher extravasation of circulating breast cancer cells

MDA-MB-231 circulating cells

а

Brain

Presence of metastasis in lung and not lung-sites

Conclusion and Discussion points

- Transcytosis can potentially used to reach tumour cells located aware from blood vessel and enhance anticancer drug efficacy
- Rigorous toxicity testing is necessary to confirm the selectivity towards tumours and asses its affect on other organs
- Is charge-switching the only property for nanoparticles that trigger transcytosis?

- NPs in analogy to inflammatory agonists, may destabilize endothelial junctions facilitating migration of cells through the vessel wall
- The work raises interesting issues for nanomedicine design suggesting the direction of therapeutic strategies aimed to normalize tumour vasculature
- Risk of nanomaterials present within the environment (food, paints, cosmetics..)

Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy

Quan Zhou^{1,6}, Shiqun Shao^{1,6}, Jinqiang Wang^{2,3}, Changhuo Xu¹, Jiajia Xiang¹, Ying Piao¹, Zhuxian Zhou¹, Qingsong Yu⁴, Jianbin Tang¹, Xiangrui Liu¹, Zhihua Gan⁴, Ran Mo⁵, Zhen Gu^{2,3*} and Youqing Shen¹*

nature nanotechnology ARTICLES

Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness

Fei Peng^{1,2,5}, Magdiel Inggrid Setyawati ^{© 1,5}, Jie Kai Tee ^{© 1,2,3,5}, Xianguang Ding¹, Jinping Wang¹, Min En Nga⁴, Han Kiat Ho ^{© 2,3*} and David Tai Leong ^{© 1,3*}

Conclusion and Discussion points

- Transcytosis can potentially used to reach tumour cells located aware from blood vessel and enhance anticancer drug efficacy
- Rigorous toxicity testing is necessary to confirm the selectivity towards tumours and asses its affect on other organs
- Is charge-switching the only property for nanoparticles that trigger transcytosis?

- NPs in analogy to inflammatory agonists, may destabilize endothelial junctions facilitating migration of cells through the vessel wall
- The work raises interesting issues for nanomedicine design suggesting the direction of therapeutic strategies aimed to normalize tumour vasculature
- Risk of nanomaterials present within the environment (food, paints, cosmetics..)

nature nanotechnology

Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy

Quan Zhou^{1,6}, Shiqun Shao^{1,6}, Jinqiang Wang^{2,3}, Changhuo Xu¹, Jiajia Xiang¹, Ying Piao¹, Zhuxian Zhou¹, Qingsong Yu⁴, Jianbin Tang¹, Xiangrui Liu¹, Zhihua Gan⁴, Ran Mo⁵, Zhen Gu^{2,3*} and Youqing Shen¹*

nature nanotechnology ARTICLES

Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness

Fei Peng^{1,2,5}, Magdiel Inggrid Setyawati ^{© 1,5}, Jie Kai Tee ^{© 1,2,3,5}, Xianguang Ding¹, Jinping Wang¹, Min En Nga⁴, Han Kiat Ho ^{© 2,3*} and David Tai Leong ^{© 1,3*}